杂交轨道,通过混合2 s,2 p x和2 p y轨道形成三个SP 2杂交轨道,而第四轨道则保持为2 p z。重叠的SP 2杂交轨道来自两个相邻原子会产生强σ共价键(C - C键);这些平面σ键将每个碳原子连接到三个邻居。这些碳原子的其余2个P Z轨道形成π键,这些碳构成了将碳层结合在一起的石墨中。因为π键比σ键弱得多,所以石墨具有低剪切强度,因此可以轻松将其碳层脱离。对于单层石墨烯而言,这些几乎游离的π电子负责其大多数实验观察到的电子和光学特性。由于保利排除原理要求来自不同碳原子的π电子不占据相同的状态,因此石墨烯中大量紧密堆积的碳原子会导致退化的能量水平分裂为连续分布的非等级允许能量状态,从而形成能带。石墨烯的真实空间二维蜂窝晶格如图1.1(a)所示。石墨烯中两个相邻的碳原子之间的距离为
作为单层碳原子,石墨烯的生产所需材料比标准半导体少得多。但此外,与当今的标准半导体材料相比,制造石墨烯的工艺具有许多环境效益。
摘要 在本研究中,我们使用机器学习 (ML) 技术探索了碳掺杂六方氮化硼 (h-BN) 薄片的电子特性。六方氮化硼是一种被广泛研究的二维材料,具有出色的机械、热学和电子特性,使其适用于纳米电子学和光电子学应用。通过用碳原子掺杂 h-BN 晶格,我们旨在研究掺杂如何影响其电子结构,特别关注基态能量和 HOMO-LUMO 间隙。我们生成了一个包含 2076 个 h-BN 薄片的数据集,这些薄片被氢饱和并掺杂了随机变化浓度的碳原子。选择了三种典型的掺杂场景——一个、十个和二十个碳原子——进行深入分析。使用密度泛函理论 (DFT) 计算,我们确定了这些配置的基态能量和 HOMO-LUMO 间隙。使用 Behler-Parrinello 原子对称函数从优化结构生成描述符,这些描述符捕获了 ML 模型的关键特征。我们采用了随机森林和梯度提升模型来预测能量和 HOMO-LUMO 间隙,实现了较高的预测准确率,R 平方值分别为 0.84 和 0.87。这项研究证明了 ML 技术在预测掺杂 2D 材料特性方面的潜力,为传统方法提供了一种更快、更经济的替代方案,对纳米电子、储能和传感器领域的材料设计具有广泛的意义。
与目前的替代化学方法相比,具有较低的自放电率(25 °C 时每年 < 0.5%)。 [1–4] 该系统的控制反应为 CF x + Li → LiF + C,是许多应用的主要候选材料之一,这些应用需要高能量密度,但电池无法充电,例如植入式医疗设备、军事和空间应用或其他极端环境。 [5] CF x 是一种非化学计量化合物,0.5 < x < 1.3,由于共价 CF 键的性质,表现出低电导率。 [1,6] F/C 比(x)取决于前体碳材料(如焦炭、石墨、纤维)的合成工艺和结构性质。 [6] 理想情况下,CF x 具有层状结构,其中每个碳原子与另外三个碳原子和一个氟原子结合,从而使结构的总能量最小化。[7,8]
核苷酸的构造糖分子的碳原子在1'至5英寸处编号[B 4]。碱始终与1'-,磷酸盐残基与糖分子的5´碳原子结合[B 2]。DNA和RNA的核苷酸通常是结构的,但是它们在前面的有机碱和糖的使用方面有所不同。虽然DNA-核苷酸含有腺苷,胸腺嘧啶,鸟嘌呤和胞嘧啶[B 3],但碱胸腺氨酸在RNA核酸中不发生。是由尿嘧啶基础制成的。核酸是通过逐渐将核苷酸添加到现有核苷酸链中而产生的。为此,核苷酸的磷酸盐其余部分与另一种核苷酸的糖分子有关。创建了所谓的糖磷酸骨链。所产生的分子链末端,无论其在一端的总长度如何,在3´-c原子(3´End)上的羟基和另一端,在5´-c原子(5´-end)上的磷酸盐[b 1,b 4]。
等离子体系统在硅和二氧化硅蚀刻期间发生过多的聚合物形成的额外问题。当血浆中的游离碳原子相互联系而不是与其他原子形成挥发性物种时,这种聚合物形成。具有高碳与氟比率的蚀刻气体经常遇到这种情况,这是因为它们释放到等离子体的自由碳原子数量越大。反应器表面上的聚合物形成会影响蚀刻的可重复性,也可以作为颗粒污染的来源。可以通过氧血浆在以后的时间彻底去除该聚合物,但仍然需要减少其初始形成。实现这一目标的一种方法是改变蚀刻化学。在血浆中添加含有化合物的氧或氧将抑制聚合物形成,但本身将对等离子体的蚀刻特性产生影响[4]。
碳石墨是一种碳的结晶形式,该碳由二维“石墨烯”结构中的六角形碳原子层组成。石墨烯层彼此堆叠,形成具有高度各向异性的三维结构。每一层中的碳原子都通过强共价键将其连接在一起,从而产生了强,稳定的晶格结构。然而,这些层本身由弱的范德华(Van der Waals)组合在一起,使它们能够轻松地彼此滑动。碳石墨的特性高度取决于石墨烯层的方向和比对。当层平行对齐时,材料沿对齐方向表现出高强度和刚度,但在其他方向上更弱且更灵活。碳含量用于高强度,刚性和电导率的多种应用。一些常见的应用包括电子接触,电动机刷以及航空空间和防御应用中的结构材料。我们工作的目的是描述石墨的结构,其物理和化学特性及其应用。
Kent Nano石墨烯涂层可保护框架,叉子,车轮和头盔免受外部影响,并促进清洁。 它是基于图的表面涂层,可用于所有硬表面,尤其是在油漆,塑料覆层,玻璃或边缘上。 由于其二维碳原子结构,纳米石墨烯涂料可保护表面免受外部影响,并提供最高的高水平,具有深度效果。 肯特纳米石墨烯涂层比常规涂料具有更高的疏水症和刮擦强度Kent Nano石墨烯涂层可保护框架,叉子,车轮和头盔免受外部影响,并促进清洁。它是基于图的表面涂层,可用于所有硬表面,尤其是在油漆,塑料覆层,玻璃或边缘上。由于其二维碳原子结构,纳米石墨烯涂料可保护表面免受外部影响,并提供最高的高水平,具有深度效果。肯特纳米石墨烯涂层比常规涂料具有更高的疏水症和刮擦强度