●土壤碳固化是捕获并存储在土壤中的大气二氧化碳的过程,形成了自然全球碳循环的一部分。●在不受干扰的天然生态系统中,碳可以存储在土壤中数千年。然而,自然土地向农田的转化使土壤有机碳库存枯竭,并将这种存储的碳释放到大气中。●牲畜放牧系统负责在过去的六十年中损失大量土壤碳。●再生放牧 - 涉及在短时间内在陆地上旋转牲畜 - 已提议作为改善土壤碳储备和抵消牲畜养殖排放的解决方案。●最近的估计表明,改善放牧管理可能会在植被和土壤中占据约63千吨(十亿吨)的碳。●但是,一旦考虑了放牧动物的甲烷和氧化氧化物的排放,估计需要135吉甘吨的碳吸收物来抵消这些排放。●依靠土壤碳固执来抵消放牧系统的排放,因为碳存储是有限的和可逆的,并且甲烷和一氧化二氮的排放量增加可能会抵消土壤中碳固相机的任何收益。再生放牧的影响也高度依赖于上下文。●尽管有不确定性,但在世界某些地区,土壤中的碳中的碳可能导致中期降低气候变化。●旨在维持或改善土壤碳的管理实践还提供其他好处,例如改善土壤健康,侵蚀控制和减少排放强度,产量和农民的收入有积极的结果。
本研究是试图确定印度中部恰蒂斯加尔邦Bilaspur Smart City附近的热电厂附近的森林种植库存的碳库存和碳固存潜力。非破坏性抽样方法用于估计地上生物量和地下生物量。为每棵单独的树测量乳房高度(DBH)处的高度和直径。制作了同类方程,以估计树种的碳储存。在国家热电厂周围记录了35种树种,半径为30公里,在四个不同的方向(东,西,北部和南方)。结果表明,ficus benghalensis是发现碳储存量最大的物种,其次是ficus eligiosa。根据本研究,开发的异形模型可以进一步估算国家热力公司发电厂及其周围森林植被中的碳库存,以及其他热带落叶林。
基于树种的碳储量估计在尼日利亚很少见。因此,我们使用系统采样技术使用非破坏性方法研究了单个树木的能力。使用Borgu部门的预先分类的Landsat-Oli/TC图像铺设了一百个圆图。绘图中心已找到并用全球定位系统接收器标记。将12.61 m半径(500 m 2)的主要图细分为5.64 m半径(100 m 2)的子图。在主要地块中测量了乳房高度(dbh)≥10cm的树木,而在子图中考虑了≥5cm dbh的树。进行了物种识别和测量。核心样品。核心样品在70°C下干燥至恒定重量。然后将木材密度计算为烤箱干燥的重量/新鲜体积。地上碳上的碳确定为50%生物量。使用核心采样器和土壤螺旋钻以600个样品在两个深度的样品图内,在样品图内的三个点上对对角样品收集土壤样品。样品被气干,磨碎并通过2 mm的筛子筛分。核心采样器和环用于测量散装密度。在105°C下将样品干燥24小时。土壤有机物是通过Fe 2确定的,因此4滴定了酸 - 二足的消化,并计算了有机碳浓度。使用涉及木材密度,DBH和Tree-Height和Anova的异形方程分析树碳数据。 遇到了16个家庭中的35种树种。树碳数据。遇到了16个家庭中的35种树种。凹室微果是最常发生的(18.8%)。树种的丰富度,多样性和重要性值指数分别为2.852、4.779和41.76±35.41。Vitellaria Paradoxa和Afzelia Africana是唯一发现的脆弱物种。带有较大DBH的树木隔离了更多的碳。因此,平均DBH为111.4±0.00 cm的Adansonia digitata隔离了最高量(2.8吨/公顷),这与其他数量明显不同(p <.05)。Securidaca longipendiculata的碳量最少(0.001吨/公顷)。与此同时,土壤碳在Acacia kosiensis,V。Paradoxa和Grewia Mollis主导的地块中较高,分别为0.006758吨/ha,平均0.073±0.0021 ton/ha的bon-bon-Stock和car--bon-stock和co-2,分别为0.271±0.010吨/ha的co 2。
海洋生物地球运动员组碳固隔机制中的碳泵。最初创建了这一问题,目的是解释在全球海洋45中观察到的DIC浓度增加,因此没有考虑有机碳在沉积物中的储存。后来将碳泵应用于海洋碳固换,在这种情况下,其定义包括有机碳转运到海洋内部,可能是沉积物。的确,IPCC 7对海洋碳泵的定义如下:溶解度泵是“一种物理化学过程,将溶解的无机碳从海面传递到其内部[…]的内部[...]驱动,主要由二氧化碳的溶解度驱动(CO 2)[CO 2)[…]和大型,热量,热氢键模式的海洋循环”;碳酸盐泵由“碳酸盐的生物形成,主要是由浮游生物产生的生物矿物质颗粒,这些颗粒沉入海洋内部,可能是沉积物[…]伴随着CO 2释放到周围的水,后来又释放到了大气中”;这是本研究的重点,生物碳泵将POC和DOC运送到“海洋内部,可能是沉积物”。
RE:HF249自然保护协会的建议,2025年2月24日,主席Swedzinski,Acomb负责人和委员会成员,自然保护协会(TNC)的使命是保护所有生命所取决于的土地和水域。TNC是在所有50个州,超过70个国家 /地区工作的领先的保护组织,其面向解决方案的工作基于科学。作为一个努力应对气候和生物多样性面临的挑战的组织,正如委员会认为HF 249时,我们写信提供基于科学的建议,应在进一步完善账单语言以确保明尼苏达州的森林保持健康且充满活力的同时,同时为碳序列提供增加的收益。根据最佳的科学,将木本生物质定义为“无碳”,这是本法案中所做的。但是,只要生物量适合特定规定(即使用磨坊残留物,去除危险燃料来降低火灾风险,或者作为弹性森林管理或入侵物种控制的一部分,市场的大小适中,以减轻气候影响,并评估生命周期分析和累积影响的影响,以实现本地环境,土地使用变化,机会和机会成本。特定的实践可以降低木质生物量的碳强度以产生能源,并为生态系统功能提供重要的共同利益。尽管某些生物量能量可以成为净零未来的一部分,但必须根据完整的生命周期分析来衡量气候益处。真诚,我们感谢法案作者在使用生物质方面的区别,这是用于非能量目的收获的木材副产品,当使用生物质替换煤炭/其他化石燃料时,可以减少总体二氧化碳排放。专门用于能源生产的木材并不是资源的有效利用,并导致森林中的碳固存和碳排放量增加。森林正面临重大威胁,尤其是森林害虫和极端天气事件。确保我们的森林对行业产品和气候利益进行仔细管理比以往任何时候都重要。,我们期待与作者合作,以进一步完善该法案的整个过程。
最近发布的IPCC缓解报告将农业条纹作为三大农业,林业和其他土地利用(AFOLU)缓解途径之一,并指出,它提供了多种生物物理和社会经济的共同点,例如诸如土地生产力,多样化的谋生活动,更高的土壤质量,更高的水平,更高的水平,更高的水平,''农林业在现场尺度上的缓解潜力。因此,农业条件是开发策略和报告国家确定的贡献(NDC)中最受欢迎的基于自然的解决方案之一,既有其潜在的缓解效益,但尤其是对于适应性,弹性和生计益处而言,它可以为小型农场提供的规模提供的适应性,弹性和生计益处。在这里,我们根据IPCC Tier 1的估计值介绍了在农业土地上的地上和地下生物量的最新全球和区域估计值,并根据遥感将结果与更新的碳密度图进行了比较,结果表明方法和初始估计是可靠的。评估了两个未来方案,以估计农业土地上树覆盖层增加的碳固换潜力:1。)增量更改和2.)对农林业的系统变化。与基于遥感的树覆盖分析相结合的地面生物量碳的估计值,以估计生物质的增加。全球增加(用于增量变化的4-6 pg C;系统变化的12-19 pg c)突出显示了实质性缓解潜力。巴西,印度尼西亚,菲律宾,印度,美国和中国是顶级国家。巴西,印度尼西亚,菲律宾,印度,美国和中国是顶级国家。在十年中,将农业土地上的全球树木覆盖量增加10%将超过18 pg c。南美的潜力最高,其次是东南亚,西部和中非以及北美。 此外,我们还提供了对山区可以提供的独特和重要贡献的农林业以及减少无法恢复的碳的压力的概述和分析。南美的潜力最高,其次是东南亚,西部和中非以及北美。此外,我们还提供了对山区可以提供的独特和重要贡献的农林业以及减少无法恢复的碳的压力的概述和分析。
抽象的土壤肥力和生产力受到剥削和退化过程的严重影响。这些威胁,再加上人口增长和气候变化,迫使我们寻找创新的农业生态解决方案。益生元是一种土壤生物刺激剂,用于增强土壤条件和植物生长,并可能在碳(C)固存中起作用。与未经处理的土壤或对照(SP)相比,评估了两种商业益生元(分别称为SPK和SPN)(分别称为SPK和SPN)对用Zea Mays L.栽培的农业土壤的影响进行了评估。在两个收获日期进行分析:应用益生元后三周(D1)和十个星期(D2)。测量了植物生长参数和土壤特征,侧重于土壤有机物,土壤细菌和真菌群落,并植物根菌根。关于物理化学参数,两种益生元治疗都会增加土壤电导率,阳离子交换能力和可溶性磷(P),同时降低了硝酸盐。同时,在D2处,SPN处理在升高特定的阳离子矿物质(例如钙(CA)和硼(B))方面是不同的。在微生物水平上,每种益生元都诱导了本地细菌和真菌群落的丰度和多样性的独特转移,这在D2处很明显。这些生物标志物被鉴定为(a)腐生型,(b)植物生长促进性细菌和真菌,(c)内植物细菌以及(d)内生和共生微生物群。该结果反映在处理过的土壤中,尤其是SPN中的肾小球素含量和霉菌化率的增加。同时通过每种益生元治疗招募了特定的微生物分类群,例如来自Spk的Spk的真菌,以及来自Spk的真菌以及Chitinophaga,Neo-os-secet and Bacillie and bacormob and bacorli secors and carlobacter,sphingobium and Massilia,以及来自Spk的真菌和schizothecium carpinicola来自SPN的真菌的细节。我们观察到这些作用导致植物生物量的增加(SPK和SPN的芽分别为19%和22.8%,根分别增加了47.8%和35.7%的干重),并促进了土壤C含量的增加(有机C含量增加了8.4%,总C增加了8.9%),尤其是SPN治疗。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。