Michael Allen博士博士 杰出教授名誉教授。 加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。 加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会Michael Allen博士博士杰出教授名誉教授。加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。 加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。自然资源,森林和气候变化硕士。俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会俄勒冈州立大学Pat Flanagan,学士生物学。加利福尼亚州立大学,长滩罗宾·科巴利(M.S.)生物学和植物生态学。加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加利福尼亚大学,河滨拱门麦卡洛克,硕士计算机科学。Azusa太平洋大学。B.S地质 /计算机科学。加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会
《巴黎协定》和《欧洲绿色协议》设定了雄心勃勃的气候变化目标。为了实现这些目标并抵消了所有其他部门的排放,在土地使用部门中需要大量的额外碳固存。土地利用部门,尤其是森林从大气中去除二氧化碳的能力是气候变化缓解途径的关键。良好的森林行业与MEA相关的SURES可以显着增加生物量以及收获的木材产品中的碳固存。在我们的研究中,我们调查了使用森林人类生成系统和特定保护状态的森林管理系统和自然保护对匈牙利森林进行类似温室气体库存分析的气候变化效应,并仅考虑生物量池。我们的主要结论是,在相似的产量类别分布记录强度和碳封存并不是成反比的。我们观察到,在较高的记录强度下,未受保护的森林实现了较高的净碳汇。关于森林管理系统,我们观察到在过渡森林管理下的净碳汇水比所有其他管理系统所发现的要高得多。连续的覆盖管理和非生产森林管理并未显示出明显不同的碳通量。
健康的生存土壤是地球上所有生命的基础(欧洲委员会,2020年),它可以维持和增强动植物,动物的生命和健康,再生水和空气质量健康(Zehetner等,2015)。在其多个关键生态系统服务和功能中,土壤是仅次于海洋的第二大活性碳池,在全球碳循环(FAO和ITP,2018年)和气候调节(瑞士联邦,2020年)中起着至关重要的作用。此外,健康的土壤对于人类营养和人类肠道微生物组至关重要,它是一种主要的接种剂,并为肠道提供微生物,对于“微生物组甲状脑轴”至关重要,因此对于人类健康(Blum等,2019; Brevik等,2019; Brevik等,2020,p。10)。土壤健康是欧盟委员会五个
中国南部南部林业与技术大学林业与生态应用应用技术实验室,长沙410004,中国B技术保护与恢复盆地的生态保护与恢复技术创新中心,自然资源部,长沙410007,长沙,410007 Haikou 570228,中国E自然科学学院,班戈大学,Gwynedd,LL57 2UW,英国F林业学院,中央南方林业与技术大学,长沙410004,中国G荷兰勘探设计与研究所农业研究所,林业与工业研究所
幸运的是,有许多已知的地区具有合适的地质。我们知道,因为我们一直在探索它们一个多世纪,而不仅要寻找良好的孔隙空间,而且要寻找石油和天然气。14个碳氢化合物(石油和天然气的技术名称)也被发现在被不可渗透的密封或盖子(“储层”)捕获的多孔和可渗透的岩石层中。15的确,耗尽的石油和天然气储存是隔离项目的常见目标。16另一种理想的用于封存的储层是盐水含水层 - 孔层含有孔,可渗透性的岩石层,含有古老海洋的盐水饱和。17像碳固换一样,石油和天然气的生产使用盐水含水层中的孔隙空间来重新注射偶然产生的废水(“生产的水”)进行处置。18石油和天然气运营还将水和二氧化碳注入耗尽的储层的孔隙空间,以提高其生产寿命(“次要或增强的恢复”)。19
浓度约为420 ppm(在此处阅读更多)。将碳移至天然系统中时,只要持有碳。从长远来看,将碳除去几年以来才能再次释放出来以防止全球变暖 - 当它的培养需要电力,燃料和合成肥料输入时,最终会增加更多的排放。耕地与倾向于成熟并永久持有碳的天然生态系统不同,它是不稳定的,需要人类干预以使它们产生足够高的量以获得盈利。诸如水果或谷物之类的产品很快被消耗,一年一度的季节会在一个季节内变成残留物,甚至当果园开始变老且无效时,果园块也被替换。是的,尽管所有成长的植物都在吸收CO 2,但在长期视图时,它们比借用更可能借用它。话虽如此 - 即使是临时碳除去也有好处,因为它使我们有更多时间采取行动并找到更多永久性的气候变化解决方案。
在美国的一项研究中,发现在高尔夫球场上,包括绿色,球道和粗糙的高尔夫球场上管理的草皮区域中,土壤细菌的丰度和物种丰富度没有差异(Allan-Perkins等人(Allan-Perkins等)2019)。然而,维护的强度确实影响了土壤真菌群落,在大量维护的果岭上发现了最差的真菌多样性,而在粗糙的果岭中观察到了最丰富的真菌多样性。球道的真菌多样性也更高。这些差异归因于农药使用的强度。同样,在一项英语研究中,观察到,与较不太强化管理的球道和粗糙的较少管理相比,最紧密管理的草皮区域,即绿色和tee脚的区域,其微生物群落明显较小(Bartlett等人。2008)。2008)。
1京都大学理学研究生院,京都 - oiwakecho,京都 - 库,京都606-8502,日本。2日本京都北北京谷大学的Hakubi高级研究中心,日本京都-KU,日本京都606-8502。3日本福库卡(Nishi-ku)九州大学744号九州大学的超级镜研究中心819-0395,日本。4九州大学应用量子物理与核工程系,诺西斯库,744,福库卡819-0395,日本。5日本同步辐射研究所(Jasri),春季8,1-1-1 Kouto,Sayo-Cho,Sayo-gun,Sayo-Gun,Hyogo 679-5198,日本。6大阪大都会大学理学研究生院,1-1 Gakuen-Cho,Naka-Ku,Sakai,Osaka,Osaka,日本599-8531。 7 Supra-Materials的研究计划,Shinshu University,4-17-1 Wakasato,Nagano 380-8553,日本。6大阪大都会大学理学研究生院,1-1 Gakuen-Cho,Naka-Ku,Sakai,Osaka,Osaka,日本599-8531。7 Supra-Materials的研究计划,Shinshu University,4-17-1 Wakasato,Nagano 380-8553,日本。
摘要随着全球CO 2的浓度的增加,由于许多国家正在努力达到净碳中立性,因此在建筑业中需要可持续的替代方案。将碳捕获和固存(CCS)技术整合到3D混凝土印刷中,以减少建筑部门的碳足迹的有前途的解决方案。本文研究了一种新的印刷技术,涉及涉及加压CO 2气体的清除,并评估了各种过程参数在促进碳固存中的有效性。结果表明,与对照样品相比,碳排序样品的碳吸收增加了15%。该方法可以与现有的隔离技术互补,从而促进大规模碳固换而没有腔室尺寸的限制。然而,对于优化各种印刷参数并实现碳捕获和隔离技术与3DCP的更加平衡,更有效的集成是必要的进一步研究和开发。
氮(N)的可用性限制了许多森林生态系统的主要生产率,尤其是北方和温带地区的生态系统(Lebauer and Treseder,2008; Du等,2020a)。可用的n来自通过土壤N矿化和叶子N吸收的内部循环,以及通过生物膜固化,大气N沉积和基岩风化的外部输入(Cleveland等,2013; Du and de Vries,2018; Morford et ef and。作为外部N输入,N沉积刺激植物的生长,从而增加许多陆地生态系统的C固结,尤其是在一个持续存在大气CO 2浓度的世界中(De Vries等,2014; O''Sullivan et al。自从工业革命伴随着人为n排放和沉积的工业革命以来,全球n个周期已被Human活动发生了巨大变化(Galloway等,2008,2021)。已经发现大量N排放会导致严重的空气污染(例如雾霾,酸雨和臭氧),并导致负面的生态影响(例如生物多样性丧失,酸性,酸性),当时是在各种生态系统中沉积到各种生态系统中,两者都在当前的热点地区,主要发生在East and South Asia和South Aseborions和北方地区,欧洲;等人,2010年;这些负面影响引起了从1980年代,1990年代的美国和2010年代的中国遏制欧洲国家排放的政策(Amann等,2013; Li等,2017; Zheng等,2018)。因此,n沉积在