○CO 2受精与冷却,降水抑制和中国大米和玉米的太阳辐射(Xia等,J。Geophys。 res。 Atmos。 ,2014年)○直接转移:使用火山喷发(Proctor等,Nature,2018)辐射与冷却,在SAI下,六种主要农作物的产量增加了约10%,在减少排放下(由于减少CO 2受肥而减少)降低了5%;湿度比降水的效果更大,并且对降低太阳能日期的影响没有影响(Fan.nation Food,2021)●快速终止的生态系统和生物多样性风险(Trisos等,Nat。>○CO 2受精与冷却,降水抑制和中国大米和玉米的太阳辐射(Xia等,J。Geophys。res。Atmos。,2014年)○直接转移:使用火山喷发(Proctor等,Nature,2018)辐射与冷却,在SAI下,六种主要农作物的产量增加了约10%,在减少排放下(由于减少CO 2受肥而减少)降低了5%;湿度比降水的效果更大,并且对降低太阳能日期的影响没有影响(Fan.nation Food,2021)●快速终止的生态系统和生物多样性风险(Trisos等,Nat。ecol。Evol。,2018)●SRM的人类健康影响(Trisos等,Nat。攀登。更改,2018年)
海洋颗粒是地球上主要元素骑自行车的关键,并在海洋中的养分平衡中起着重要作用。海洋颗粒的三个主要类别通过塑造碳分布来连接开放海洋的不同部分:(i)下沉; (ii)暂停,(iii)上升。由浮游植物在地表水中捕获的大气碳,部分通过将颗粒沉入海洋底部,并在控制全球气候中起着重要作用。悬浮的颗粒代表了异养微生物的有机碳的重要来源,与下沉的颗粒相比,更有可能发生回忆性。上升的颗粒,取决于其组成,原点和上升速度,可能会导致海洋上层的碳回忆性,靠近大气。海洋颗粒是微生物活性的热点,因此被微生物重现,其动力学在有机物降解,聚集和下沉中起着重要作用,从而直接影响了生物碳泵的效率。海洋颗粒的微生物组因粒径,来源和年龄而不同。尽管如此,这些因素通常被忽略,并且粒子大多在不考虑各个颗粒之间的高异质性的情况下被视为“散装”。这阻碍了我们对海洋中的碳预算的理解,从而对气候变化的未来预测进行了预测。此外,我们介绍了一个新颖的概念:“脂质碳分流”。在这篇综述中,我们检查已知的粒子类型和相关的抽样方法,并确定知识差距,并强调需要更好地了解单粒子生态系统以提高全球升级率。
fi g u r e 1微生物生态进化动力学对生态系统功能的影响。跨站点的社区由不同的操作分类单元(OTU)组成,这是微生物物种的替代物(此处为四个OTU为简单起见)。然而,OTUS掩盖了数百万年的进化差异,排除了对微生物种群或其他适应性反应的进化动力学的见解。当一个社区对环境变化做出反应时,生态(即种间变化)和进化反应(即种子内变化)转移分类(物种)和遗传(等位基因(等位基因)频率)。可以通过系统发育保护程度来评估功能性状(例如,碳降解和温度反应)的变化(例如碳降解和温度反应),以预测社区的整体功能响应。
项目背景和参与领域 循环经济在菲律宾和国际讨论中越来越重要。特别重要的是推广更可持续的生产和消费模式以及废物预防和回收。GIZ 正在实施欧盟资助的“菲律宾绿色经济计划”(GEPP)的一部分。GIZ 的贡献侧重于加强低碳循环经济,包括以下组成部分:(1)与来自欧盟和菲律宾的参与者建立一个多利益相关方平台,以进行知识交流和建立伙伴关系;(2)政策咨询和对话,重点是生产者延伸责任(EPR)和循环经济综合框架立法;(3)确定、实施和影响评估(包括气候影响)与循环经济或废物预防相关的示范项目,并提供政策或技术参考;(4)与国家机构一起开发低碳循环经济培训模块。此外,还包括知识交流和提高认识的活动。 GEPP 的其他要素由联合国开发计划署 (UNDP)、Expertise France 和国际金融公司 (IFC 世界银行集团) 实施,包括与城市和私营部门的合作。GIZ 在这些实施伙伴中发挥着协调作用。GIZ 活动是位于曼谷的 BMWK 区域项目“城市行动”的一部分。任务:
摘要。在气候模型中对碳循环的仿真由于对气候变化的影响很重要,但是在以前的模型中发现了许多弱点。 参与耦合模型对比项目第6阶段(CMIP6)的地球系统模型(ESMS)中土地碳循环表示的改进,包括对碳和ni-trogen周期的互动处理,改善了光合作用的光合作用和土壤水文学。 为了评估这些模型发展对全球碳循环AST的影响,将Earth System模型评估工具(ESMVALTOOL)扩展为比较CO 2-浓度 - 浓度和CO 2发射驱动的历史模拟,从CMIP5和CMIP6和CMIP6与观察数据集进行了比较。 特定的重点是在有和没有交互式陆氮循环的模型中的差异。 超出了CMIP5中光合作用(GPP)的光合作用(GPP),在CMIP6中大部分分析了具有交互式氮循环的参与模型,但保留模型。 这表明包括营养限制的重要性。 模拟叶片区域内(LAI)仍然具有挑战性,并且在CMIP5和CMIP6中均具有较大的模型。 在ESM中,在CMIP5和CMIP6多模型均值中,全球平均土地碳吸收(NET BIOME生产力(NBP))很好地回复了。 但是,这是北半球NBP低估的结果,这是由概论所补偿的在气候模型中对碳循环的仿真由于对气候变化的影响很重要,但是在以前的模型中发现了许多弱点。参与耦合模型对比项目第6阶段(CMIP6)的地球系统模型(ESMS)中土地碳循环表示的改进,包括对碳和ni-trogen周期的互动处理,改善了光合作用的光合作用和土壤水文学。为了评估这些模型发展对全球碳循环AST的影响,将Earth System模型评估工具(ESMVALTOOL)扩展为比较CO 2-浓度 - 浓度和CO 2发射驱动的历史模拟,从CMIP5和CMIP6和CMIP6与观察数据集进行了比较。特定的重点是在有和没有交互式陆氮循环的模型中的差异。超出了CMIP5中光合作用(GPP)的光合作用(GPP),在CMIP6中大部分分析了具有交互式氮循环的参与模型,但保留模型。这表明包括营养限制的重要性。模拟叶片区域内(LAI)仍然具有挑战性,并且在CMIP5和CMIP6中均具有较大的模型。在ESM中,在CMIP5和CMIP6多模型均值中,全球平均土地碳吸收(NET BIOME生产力(NBP))很好地回复了。但是,这是北半球NBP低估的结果,这是由概论所补偿的
光合作用是一种基本的生物学过程,是地球生命的基石,维持地球的生态系统并在全球碳循环中起关键作用。这种复杂的过程主要发生在植物,藻类和某些细菌中,将阳光转化为化学能,从二氧化碳和水中产生氧气和有机化合物。由浮游植物驱动的生物碳泵将碳从海面传输到更深的水域。当浮游植物死亡时,它们的有机物会沉入海底,有效地隔离了碳。这种自然机制强调了保护海洋生态系统并解决海洋酸化的重要性,这威胁了浮游植物种群。光合作用与全球碳循环之间的关系不仅对维持生命的维持至关重要,而且对于调节地球的气候和大气组成也至关重要(Alonso-Blanco等,2000)。
《巴黎协定》要求减少排放以限制气候变化,但是如果碳周期成功,碳循环将如何变化呢?目前,土地和海洋吸收了大约一半的人为排放,但未来这一比例将下降。可以缓解气候之前可以释放的碳量取决于海洋和陆地生态系统可以吸收的碳量。策略基于模型预测,但观察和理论表明,当今临时性中出现的气候效应将增加,并且可以跨越碳循环倾斜点。升温温度,干旱以及CO 2本身的增长速度放缓将减少土地和海洋水槽,并创造新来源,从而使森林,土壤以及其他土地和其他水生植被更加困难。观察结果,数据合并模型和预测系统需要在实现零净排放后对土地和海洋系统进行持续的长期变化。
政策和市场激励措施正在迅速扩大,以促进全球农田中的土壤有机碳(SOC)隔离。证据表明,SOC的长期增加可以影响作物产量和氮(N)肥料的要求,并有可能帮助应对两个重要的可持续性挑战。但是,SOC的增加也可能触发较高的土壤一氧化二氮(N 2 O)排放,这将代表缓解气候变化的重要权衡。我们检验了以下假设:SOC的长期增加与较高的农作物产量和肥料n使用效率(NUE)有关,但以较高的N 2 O排放为代价。小麦在三个n肥料速率(0、100和200 kg n ha -1)中种植在两种土壤(SOC低和SOC高)中,并在中菌实验中生长。从22年的野外实验中获得了(0 - 25厘米),并在加利福尼亚州的杂物中获得了土壤。结果表明,SOC低于SOC的总生物量和谷物产量高于100 kg n ha -1,而不是其他n个水平。在200 kg n ha -1时SOC低的作物N摄取也高28%,从而导致整体NUE更高。与SOC低相比,SOC高25 - 112%的SOC 土壤N 2 O排放量增加了,这可能是由于不稳定C和N池的长期变化,微生物活性以及影响孔隙率和气体扩散的土壤结构。 虽然在农业土壤中增强SOC的作物和环境益处有充分记录,但这项研究的结果表明,应考虑应考虑土壤N 2 O排放的变化以准确确定净GHG净排放量。土壤N 2 O排放量增加了,这可能是由于不稳定C和N池的长期变化,微生物活性以及影响孔隙率和气体扩散的土壤结构。虽然在农业土壤中增强SOC的作物和环境益处有充分记录,但这项研究的结果表明,应考虑应考虑土壤N 2 O排放的变化以准确确定净GHG净排放量。
由于气候变化和富营养化,主要有毒的淡水蓝细菌的花朵正在加剧,并且很可能会定居河口,从而影响底栖生物和养殖养殖,重强调主要的生态,健康,健康,健康和经济风险。在自然环境中,微囊藻形成大型粘液菌落,会影响蓝细菌和嵌入细菌洞穴的发展。然而,盐度增加对微囊藻的天然菌落的命运知之甚少。在这项研究中,我们监测了一个微囊藻的命运,沿法国淡水盐梯度沿着鲜花的不同阶段沿着法国淡水盐梯度沿着微生物组的命运。我们证明了蓝细菌基因型组成的变化,在特定代谢产物(毒素和兼容溶质)的产生中以及响应盐度升高的异育细菌结构的变化。尤其是M.铜绿和Wesenbergii M.基于微囊蛋白基因丰度,蓝细菌在其河口转移期间变得更具毒性,但没有选择特定的微囊蛋白变体。沿连续体发生了兼容溶质的增加,海藻糖和甜菜碱积累。盐度大多是异养细菌群落,沿着连续体的丰富性和多样性增加。与粘液相关的相关分数中的核心微生物组高度丰富,表明微囊肿及其微生物组之间存在很强的相互作用,并且可能保护粘膜对渗透冲击的作用。这些结果强调了更好地确定微囊菌落与它们的微生物组之间的相互作用,这可能是其广泛成功并适应各种环境条件的关键。
当地球温暖时,边界层最深(例如夏季/下午),这意味着排放量正在逐渐增加,并且变得越来越散布。这使得气体的浓度比在ABL较浅时的天气和较冷温度的天数要小。如果我们在浅ABL内释放相同数量的气体(例如200米),在那个空气体积(彼此非常接近)中,它们将非常稠密,因此将具有更高的浓度!