近年来,超级电容器 (SC) 是用于清洁能源前景的新兴技术之一。更高的功率密度、更低的比能、更长的循环寿命和环境友好性使超级电容器比传统电池更胜一筹。然而,科学界正致力于通过寻找合适的电极材料来提高超级电容器的比能。据报道,碳材料、导电聚合物和金属氧化物或氢氧化物是适合超级电容器电极的候选材料 [1-3]。活性炭、碳纳米管和石墨烯等碳材料具有出色的电导率和化学稳定性 [4],然而,它们的电荷存储容量窄,能量密度相对较低 [1]。另一方面,导电聚合物是伪电容器的不错选择 [3]。然而,导电聚合物的电化学稳定性较差。为此,过渡金属氧化物 (TMO) 因其多种氧化态和快速的氧化还原动力学而成为替代候选材料 [2,5-7]。在其他 TMO [8-10] 中,氧化钒因其成本低、价态多样、来源丰富而受到广泛关注[11-
碳作为原位H 2 O 2 Generation的一种有吸引力的电极材料[4-10],鉴于其对两电子ORR的催化活性以及对寄生氢反应(HER)的催化性行为。 [11]此外,具有成本效益的碳材料具有高比表面积,较大的孔隙率,电导率和热稳定性以及化学稳定性,这使它们在贵金属及其合金方面具有优势,尤其是用于水处理。 通常,石墨板,石墨毛毡,活性炭纤维和碳毡用作水处理的阴极。 [13]但是,这些电极需要通过引入更多的cacta活性和选择性的部分来进行有效的H 2 O 2产生。 [12,13]此外,大多数活化的碳材料都是粉状的,需要与聚合物粘合剂(例如聚氟乙烯(PTFE))混合,以将其加工到电极组件中。 [14–16]这些荧光化合物被用作粘合剂,不仅可以阻止碳的活跃位点,而且还增加了通过从电极表面释放的不良释放来增加Sec-ondary污染的风险。 [10,17]此外,在适用于两电子氧还原反应(ORR)的施加潜力下,碳电极上Fe 2 +的再生相对较慢,导致碳作为原位H 2 O 2 Generation的一种有吸引力的电极材料[4-10],鉴于其对两电子ORR的催化活性以及对寄生氢反应(HER)的催化性行为。[11]此外,具有成本效益的碳材料具有高比表面积,较大的孔隙率,电导率和热稳定性以及化学稳定性,这使它们在贵金属及其合金方面具有优势,尤其是用于水处理。通常,石墨板,石墨毛毡,活性炭纤维和碳毡用作水处理的阴极。[13]但是,这些电极需要通过引入更多的cacta活性和选择性的部分来进行有效的H 2 O 2产生。[12,13]此外,大多数活化的碳材料都是粉状的,需要与聚合物粘合剂(例如聚氟乙烯(PTFE))混合,以将其加工到电极组件中。[14–16]这些荧光化合物被用作粘合剂,不仅可以阻止碳的活跃位点,而且还增加了通过从电极表面释放的不良释放来增加Sec-ondary污染的风险。[10,17]此外,在适用于两电子氧还原反应(ORR)的施加潜力下,碳电极上Fe 2 +的再生相对较慢,导致
这些一维碳纳米材料包括单壁和多壁碳纳米管(CNT)、带状和板状碳纳米纤维、竹状碳纳米管、杯状堆叠碳纳米纤维等。[7–10] 一维材料广泛应用于复合材料、涂层、传感器、电化学储能和电催化剂,利用其强度、导电性、低密度、宽带电磁吸收、高表面积和化学稳定性。[11–14] 由于其广泛的用途和科学兴趣,找到合成一维碳材料的新方法仍然至关重要。形成一维碳材料的大多数合成策略,包括电弧放电、激光烧蚀、化学气相沉积、等离子炬和高分压一氧化碳,都涉及在催化金属表面移动原料中的碳原子,然后碳原子生长成石墨一维形貌。 [15] 当前的这些方法通常会生成需要分离的一维材料和无定形碳的混合物,而一维材料的合成通常存在生产率低(< 1 gh −1 )的问题。[16–18]
基于碳的超级电容器的能量存储能力取决于电解质离子的吸附或电极和电解质界面上可逆的氧化还原反应的吸附。碳材料中的大量微孔(直径少于2 nm)被认为对于通过提供丰富的可访问的表面积和活性位点而对增加能量密度至关重要。然而,电解质离子不能有效地转运到微孔中的内部孔中,从而导致电极材料的下功率性能。通常认为,中孔(2 - 50 nm),尤其是狭窄的中孔可以提供短的电子和离子传输途径,从而增强了微孔的利用率。13,14此外,大孔(> 50 nm)还可以作为快速的储层,以存储更多的电解质离子。因此,具有丰富合适微孔的孔结构的合理设计,碳材料的宏观和中孔具有很大的显着性cance cance cance cans cans cans and cants and cants cans的能力和速率能力。将杂原子引入碳网络是获得出色电化学
Dr. L. Muzi、C. Seifert、R. Soltani、Dr. C Ménard-Moyon、Dr. H. Dumortier、Dr. A Bianco CNRS、免疫学、免疫病理学和治疗化学、UPR3572、斯特拉斯堡大学、ISIS、67000 斯特拉斯堡、法国 电子邮件:a.bianco@ibmc-cnrs.unistra.fr 关键词:碳材料、超分子复合物、溶菌酶、B 细胞、癌症
▪功能性树脂和电路板材料(铜覆盖的层压板(用于非粘附的FPC和环氧树脂树脂)▪显示材料(液体晶体和有机物(液体晶体和有机物)▪紫外线和热固化树脂材料▪金属箔▪金属载体▪用于固定的固定剂▪固定式固定液▪ ▪基于俯仰的碳纤维▪多孔碳材料((燃料电池的催化剂载体)
自1985年发现有机C 60富勒烯和1991年的碳纳米管[2]以来,已经发表了许多科学论文,将其物理和化学性质描述为新碳材料[3-6]。引起研究人员极大兴趣的主要特征是富勒烯是一种分子形式[1],碳纳米管被认为是结合分子和固体特性的分子间物质[7]。近年来,对纳米结构的碳材料的需求不断增长,用于微电源[8-9],生物医学[10-11],太阳能[12-14],Photonics [15-16]和纳米工程[17-18]在整体物理学的研究中恢复了整体的研究,从(C 60,C 70)在各种有机和无机溶剂中。The most interesting varieties of supramolecular nanoarchitectures less than 1000 nm in diameter based on fullerenes are nanorods [19–20], nanowires [21–22], nanowhiskers (NWs) [23–24], nanotubes [25–26], and nanosheets [27–28].当前,已经开发了几种方法来获得此类富勒烯纳米结构,特别是蒸发饱和溶液的方法[29-30],模板方法
硬碳是一种有希望的负电极材料,用于可充电钠离子电池,因为它们的前体准备就绪且可逆的电荷存储。驱动硬碳和随后的电化学性能的反应机制严格与这些材料电压填充中观察到的特征坡度和高原区域有关。这项工作表明,电子顺磁共振(EPR)光谱是一种强大而快速的诊断工具,可预测硬碳材料中gal-VanoStatic测试期间在坡度和高原区域中存储的电荷程度。EPR线形模拟和温度依赖性测量有助于分离在不同温度下合成的机械化学修饰的硬碳材料中旋转的性质。这证明了结构模构和电化学曲线中的电化学特征之间的关系,以获取有关其钠储存机制的信息。此外,通过现场EPR研究,我们研究了这些EPR信号在不同电荷状态下的演变,以进一步阐明这些碳中的存储机制。最后,我们讨论了研究的硬碳样本的EPR光谱数据与它们相应的充电存储机制之间的相互关系。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。