背景海藻是最可持续的生物量之一,因为它的生长速度以及缺乏土地,肥料和生长淡水需求。可以处理它们以提供清洁能源,服务和可销售的产品,包括生物塑料 - 支持经济增长,粮食安全和可持续性野心。海藻还可以支持更广泛的英国政府野心1,例如自然环境的恢复以及用于治疗癌症2和糖尿病等医疗状况的产品的开发。因此,有强烈的环境和经济原因可以支持新兴的海藻行业,尤其是通过创建专门的海藻加工厂(生物精致),其中多种产品是以可持续的方式生产的,可最大程度地提高价值并最大程度地减少浪费。顺便说一句,到2027年4月4日,全球海藻生物生物产品市场规模和价值预计将超过60亿英镑,英国处于领导这一领域的强烈地位。这是由于英国具有出色的生物制造能力和专业知识,宽敞的海岸线和海底空间区域,并且还成为公认的北大西洋海藻多样性中心。644种不同的物种居住在其沿海水域5。但是,与其他欧洲和亚洲国家相比,英国海藻行业仍处于起步阶段,英国有机会失去将自己定位为该行业的国际领导者的机会。
与其他研究人员一起,由马丁·斯蒂格曼(Martin Stegmann)领导的主席工作组,确定了这种关系的连接点之一:C末端编码的肽(CEP)。这些是植物肽激素,称为植物细胞因子,它们作为允许反应到根部形成的各种功能。现在的研究表明,它们在植物的免疫防御中也发挥了作用。
农业生态系统是地球上最大的人工生态系统,可提供全球66%的粮食供应。土壤微生物是用于碳和营养循环的发动机。然而,雨养农业生态系统中的受精和种植模式介导的土壤微生物群落结构以及碳和氮转化的驱动机制尚不清楚。该研究是在中国山西省的Changwu农业生态实验站进行的。设计了七种不同的施肥和种植模式。使用磷酸盐脂肪酸(PLFAS)来探索受精和镀层模式对土壤微生物群落结构的影响以及与土壤碳和氮的关系。结果表明,处理之间的土壤物理和化学特性存在显着差异。有机肥料显着增加了土壤碳和氮,并减少了土壤pH值。小麦和玉米旋转处理中总PLFA和微生物基团的含量最高。与种植模式的变化相比,有机肥料对PLFA含量和土壤生态过程的影响更大。土壤微生物群落结构与土壤有机碳(SOC),总碳(TC),总氮(TN)和总磷(TP)具有显着正相关。与施用NP肥料相比,使用有机肥料显着提高了土壤呼吸率和矿化氮含量,同时降低了土壤微生物生物量碳(MBC)。相关分析表明,土壤呼吸与SOC和TP显着相关,并且矿化氮与SOC,硝酸盐氮,TN和MBC显着呈正相关。结构方程模型(SEM)表明,土壤呼吸速率受到TC的显着积极影响,并受到SWC的负面影响,并解释了63%,而矿化氮显着受到TN的影响,并解释了总方差的55%。
。CC-BY-NC 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 1 月 12 日发布了此版本。;https://doi.org/10.1101/2022.12.20.521212 doi:bioRxiv 预印本
问题陈述:能够高速和高功率处理的半导体设备平台是无数RF电源应用的关键组件级构建块,例如雷达(国防,航空航天和平民 - 汽车),通信(国防,航空航天,航空和平民 - 5G及以后),信号jamming和rf。迫切需要这些技术,尤其是印度的国防和航空航天机构,因为它们是敏感和控制的。
钻石的使用不仅限于珠宝。它被称为从重工业到半导体和其他前沿行业的各种技术的基本材料。Sumitomo Electric Industries,Ltd。在1970年代开始研究合成单晶钻石(Sumicrystal),并成功地成为了世界上第一个大规模生产钻石(照片1)。sumicrystal具有高硬度和高热电导率。此外,与天然钻石相比,我们的技术可以将晶体缺陷和错位降低到极低的水平。由于这些出色的特性,Sumicrystal已用于广泛的应用中,例如研磨轮,梳妆台,绘画模具,切割工具(1),钻头,末端磨坊,抛弃插入物和散布器。此外,Sumitomo Electric在1995年成功开发了无色的高纯度钻石。它已被用作各种光学组件和耐压窗户的材料。近年来,钻石中的NV-中心一直是超高灵感传感器的关注焦点
摘要:我们回复 J.-M. Mewes、A. Hansen 和 S. Grimme (MHG) 的评论,他们对我们通过气体电子衍射 (GED) 确定的 (C 6 F 5 )Te(CH 2 ) 3 NMe 2 中 N···Te 距离的 re 值的准确性提出质疑。我们最终证明,MHG 引用的参考计算结果不如他们声称的固态和气相准确。我们通过更高级别的计算表明,我们并未遗漏开链构象异构体的重大贡献。对模拟散射数据的细化表明,此类贡献对 re (N···Te) 的影响几乎可以忽略不计。MHG 建议使用 H0 调谐的 GFN 方法来计算振动校正 rare ,但这并没有显著改变这些值。使用更高级别的解析谐波和数值立方力场 (PBE0-D3BJ/def2-TZVP) 进行替代振幅计算,得出 re (N···Te) = 2.852(25) 的 GED 值,该值完全在原始值 2.918(31) 的实验误差范围内,但远低于 MHG 预测的 2.67(8)。现在改进的误差估计解释了计算辅助值的不准确性。与其他涉及弱化学相互作用的系统相比,弱 N···Te 相互作用的气固差异处于现实范围内。Mewes、Hansen 和 Grimme 最近的评论 [1]
重要的披露:美国精神病药剂师协会的社区外展工作提供了此信息。此信息仅用于教育和信息目的,而不是医学建议。此信息包含重要点的摘要,并不是对有关该主题的信息的详尽回顾。始终寻求医生或其他合格的医疗专业人员的建议,您对药物或医疗状况可能有任何疑问。永远不要延迟寻求专业医疗建议或由于本文提供的任何信息而无视医疗专业建议。美国精神病学家协会违反了本文提供的信息所指控的所有责任。
化石燃料的高昂成本表明,氮(N)肥料价格在前景的未来将保持较高。以较高的价格,许多生产商正在尝试评估几种N添加产品在其生产系统中的实用性。高N价格使这些产品更具吸引力,因为它需要减少n磅的n磅才能抵消添加剂的价格。目前,有三种类型的产品被销售,声称可以提高氮的使用效率:硝化抑制剂,尿素酶抑制剂和受控的释放肥料产品。这些产品通过减慢氮循环中的一个过程之一来起作用,从而减少n损失。在购买之前,生产商应该对这些产品的工作原理有很好的了解,以便对其使用做出明智的决定。
摘要。了解土壤中植物来源的碳(C)和氮(N)转化和稳定的机制对于预测土壤气候变化的土壤能力并支持其他土壤功能是基础。植物残基和颗粒有机含量(POM)的分解有助于在土壤中形成与矿物相关(平均更稳定)有机物(MAOM)的形成。mAOM是由溶解有机物(离体途径)或微生物坏死和生物产物(体内途径)与矿物质和金属胶体的结合形成的。这两种土壤有机物(SOM)稳定途径中的哪一个更为重要,在哪些条件下是一个开放的问题。为了解决这个问题,我们提出了一个新型的诊断模型,以描述MAOM中的C和N动力学,这是残基和POM分解动力学的函数。专注于土壤阶层之间的关系(即在相空间中进行建模),而不是时间传播可以隔离稳定的基本过程。使用此诊断模型与36项研究的数据库结合使用,其中残基C和N被跟踪到POM和MAOM中,我们发现MAOM预先由Microbes De-Necromass促进,由Microbes De-Necromass推动,由Microbes de-Relembobes de-Ros-Ros-Ros-Coles coless colembles和POM。在黏土土壤中,该体内途径的相关性较高,但在富含C的土壤中和N量添加的残基中较低。总的来说,我们在相空间中的新型建模被证明是对土壤C动力学的机械研究的合理诊断工具,并支持了当前对Micro-
