词汇 碳汇:储存的碳多于其向环境中排放的碳的物质(树木、海洋) 碳源:向环境中释放碳的物质(化石燃料燃烧、动植物分解、呼吸作用) 生态系统:包含生物(如植物、动物、细菌)的区域,这些生物彼此之间以及与非生物环境(如气候、土壤、地形)之间相互作用。 能量网:能量通过一系列相互连接的食物链进行转移的系统。 森林:以树木覆盖为主导的生态系统,包含各种其他生物(如其他植物、动物)。 物质循环:一种生态系统功能,其中元素被沉积、被生物利用以及储存或输出。 预测:根据对当前情况的研究,对未来情况或趋势的估计或预测。 乡村森林:城市、乡镇或街区以外乡村的森林生态系统。 城市森林:包括乡镇、村庄或城市内及周围的所有树木和其他植被的森林生态系统。植物、人类和动物都是城市森林的一部分。
在RA号中重申了DOE的同样任务9136,或2001年的《电力工业改革法》(“ Epira”),该法指示DOE开发和更新现有的菲律宾能源计划(“ PEP”),以综合而全面的探索,开发,开发,利用,利用,分销,分配和能源保存,并具有对环境友好的,生动的,灭绝的,低点和低点概率和低点的综合偏见。3根据THETO,2020-2040 PEP中的DOE进一步认识到天然气作为可行的过渡工具的作用,最终将菲律宾的能源供应转变为基本上由可再生的低碳源组成的作用。4尤其是,PEP以及国家可再生能源计划(“ NREP”)使天然气的可用性成为合适,清洁和高效的过渡燃料,具有自然和技术规格,以平衡RE的可变性,同时保持该国电力系统的可靠性。5使用本土气体(包括聚集及其混合)将有助于减少对进口燃料来源的依赖,其价格往往会在世界市场上波动。
摘要。粉煤灰,塑料废物和粘土是马来西亚常见的矿物质和残留物。在这项研究中,这些材料被充分利用为合成碳纳米管(CNT)的原材料。回收的聚丙烯先前用作食品容器,用作碳源。粉煤灰和粘土被探索为CNTS生长的潜在底物。在惰性环境中,在900°C的90分钟内将回收的聚丙烯热分解。在此过程中释放的碳原子被沉积在粉煤灰和粘土底物上,粉煤灰和粘土底物已浸入二代封溶液中,以提供CNTS生长的金属催化剂。使用扫描电子显微镜(SEM)和X射线衍射(XRD)对沉积产物进行表征。形态分析表明,粉煤灰和粘土都涂有纤维样结构,根据与XRD模式约26°的衍射峰确认为CNT。总而言之,粘土和粉煤灰证明了被用作CNT形成的底物的潜力。关键字:催化热分解;黏土; cnts;粉煤灰;再生聚丙烯1。简介
丹麦 Electrochaea.dk ApS c/o Sønderjyllands Revision Torvegade 6 6330 Padborg 行业 电转气、能源存储、二氧化碳回收、可再生燃料、可再生甲烷、电子甲烷、绿色甲烷、清洁甲烷、可再生天然气、可再生能源、绿色气体、生物技术、清洁技术、RNG、SNG 关于 Electrochaea Electrochaea 正在将其电转气 (P2G) 技术商业化,通过提供电网规模的可再生气体发电和能源存储解决方案来取代化石燃料。我们的专有工艺将可再生电力和二氧化碳转化为电网质量的可再生甲烷,以便储存和分配。我们的中试工厂已将可再生甲烷注入瑞士和丹麦的商业天然气管网。使用我们的工艺,可再生甲烷由我们的专利生物催化剂从 CO2 和 H2 合成,生物催化剂是一种选择性进化的微生物,称为产甲烷古菌。管道级甲烷在我们可扩展且强大的甲烷化系统中生产,可注入天然气管网或立即用作燃料。我们的工艺减少了二氧化碳排放,而是回收了厌氧消化器、垃圾填埋场、奶牛场、发酵设施或工业过程等二氧化碳源。可再生氢气可以通过电解从可再生电力中产生,也可以通过某些将氢气作为废品的工业过程产生。我们的生物催化剂具有高效性和稳定性,这使我们的专利甲烷化技术能够以更低的资本和运营成本运行,并且比传统的热化学甲烷化工艺具有更大的灵活性。生物催化剂与可变的工作周期和二氧化碳源中的常见杂质兼容。P2G 储能通过现有的天然气网络基础设施实现几乎无限的存储容量。可扩展的流程可实现广泛的部署。Electrochaea 将其技术授权给商业合作伙伴,提供我们专有的生物催化剂、某些工程/设计文档和相关服务的访问权限,以支持我们工艺的运营实施。Electrochaea GmbH 是一家充满活力的成长阶段公司,总部、工程和开发团队位于德国慕尼黑。Electrochaea 的子公司位于丹麦和美国加利福尼亚州。点击此处即可虚拟参观我们位于瑞士索洛图恩的工业规模试验工厂。
塑料,解决与不可降解材料相关的环境问题。与常规合成聚合物相比,这项全面的综述涵盖了PHB的结构阐明和特性。它深入研究了PHB合成的各个方面,包括发酵方法和优化技术。此外,它研究了多种PHB产生菌株及其菌株依赖性特性,以及探索能够跨不同分类学组的PHB合成的微生物。对碳源对PHB产生及其热力学特性的影响进行了审查,并讨论了下游过程以进行PHB恢复。此外,在不同环境条件下,PHB的生物降解机制得到了阐明,强调了微生物酶促途径和影响生物降解速率的因素。PHB在各个领域的应用,例如食品包装,药物输送系统,汽车行业和医疗植入物,以其社会利益和环境可持续性而强调。审查以对未来前景的见解结束,强调需要继续研究和创新以优化PHB生产过程并评估可持续性指标。关键字: - 多羟基烷酸盐,生物合成,微生物,恢复,下游过程。
图 1. PGM2 的修复使 S. boulardii 能够代谢半乳糖 (a) 该图说明了 Sb 中的半乳糖利用途径,其中失活的 PGM2 酶导致有毒中间体积累。(b) 工程化的 SbGal⁺ 途径显示 PGM2 活性的恢复,从而实现高效的半乳糖代谢。(c) 野生型 Sb MYA-796 和基因修复的 Sb MYA-796 (SbGal⁺) 在具有各种碳源的完全合成培养基 (CSM) 中的生长比较。数据显示 SbGal⁺ 在 2% 半乳糖上的生长得到改善,证明了 PGM2 修复的好处(橙色突出显示)。在木糖和乳糖等不利用半乳糖代谢途径的替代糖上,Sb 和 SbGal⁺ 之间的生长差异很小甚至没有。 SbGal ⁺ 在棉子糖与葡萄糖共存时,生长增强,表明该菌株在肠道等复杂的糖环境中具有提高性能的潜力。值代表在所示培养基中生长 36 小时的三个生物重复的终点光密度的平均值。
Xanthan Gum是一种通过发酵源自Xanthomonas Campestris的多功能生物聚合物,它因其在各种行业(尤其是食品和化妆品中)的商业应用而引起了极大的关注。然而,由于发酵中使用的昂贵碳源,其生产成本仍然很高。这项研究探讨了利用食品和饮料浪费的可行性,包括西瓜皮,香蕉皮,面包店废物和米淀粉水,作为Xanthan发酵的经济和环保替代品。X. Campestris NCIM 2961用于发酵,并且优化了各种参数,例如pH,温度,孵育期和搅拌,以增强黄金的产量。结果表明,与标准培养基相比,替代底物具有黄原生产的潜力,某些条件产生的牙龈产量相当甚至更高。这项研究的另一个目的是将黄原胶作为琼脂替代品的潜力。微生物的生长,例如大肠杆菌,金黄色葡萄球菌和酿酒酵母在黄原取代的琼脂板上成功。这项研究强调了为可持续生物聚合物生产带来的废物流的前景,从而提供了经济和环境利益。
在未来的脱碳能源系统中,残留碳排放需要战略规划和管理。在环境管理中,考虑当地地理框架的碳去除评估。本文介绍了一个可扩展且具有适应性的模型,用于评估跨地理量表的未来碳捕获和存储(CCS)配置的经济学和地理,从而涵盖了碳的捕获,运输和存储。该模型适用于北丹麦地区,表明未来的能源生产碳源将集中在Thinded和Jammerbugt,而工业来源仍保留在Aalborg和Repill市政当局中。评估包括卡车,管道和运输在内的碳运输配置,以存储在陆上和近海地质储藏中的碳。区域规模的发现表明,管道和陆上存储提供了最经济的配置。但是,使用较小地理范围的灵敏度研究表明,通过评估碳体积和距离来优化碳转运的潜力。本文讨论了该模型的灵活性和可伸缩性如何实现替代成本组件的全部信息,从而支持计算碳重新利用电势的计算,包括碳捕获,利用率和存储(CCUS)配置。
抽象的酵母人工染色体克隆是一种用于基因组映射研究的有吸引力的技术,因为很大的DNA片段可以很容易地传播。然而,详细的分析通常需要广泛的印迹杂交技术的应用,因为人工铬的通常仅以每个单倍体基因组的拷贝形式存在。我们已经开发了一个克隆载体和宿主菌株,通过允许人工染色体的副本数量来减轻此问题。矢量包括一个conter粒粒料,可以通过更改碳源来打开或关闭。可以通过选择异源性胸苷激酶基因的表达来实现强大的人工染色体副本的强选择性压力。使用此系统时,大小约100至600千碱基的人造染色体很容易被放大10至20倍。选择性条件并未在测试的任何克隆中引起明显的后栅格。在放大的人造染色体克隆中的丝粒重新激活,从而稳定地维持了20代拷贝数。拷贝数控制在人造染色体分析的各个方面的应用。
古巴为实现农业可持续发展所做的努力包括大规模使用生物制剂,这产生了巨大的经济、生态和社会影响。甘蔗是我国主要农作物之一,在世界范围内具有重要的经济和生态意义。本研究证明了不同碳源和氮源对 5 种甘蔗内生菌株生长的影响,其中 3 种为固氮葡萄糖醋杆菌,1 种为地衣芽孢杆菌,1 种为成团肠杆菌。同样,研究了五个品种的汁液以及不同浓度的植物激素 3-吲哚乙酸 (IAA) 和赤霉酸 (GA) 对生长的影响。结果表明,在LGI培养基中添加天冬酰胺和硫酸铵作为氮源,能够促进所研究的内生细菌更好地生长。添加甘蔗汁的LGI培养基显著有利于(p≤0.05)内生微生物的生长,并且果汁的品种来源与菌株之间没有直接关系。另一方面,低浓度的植物激素有利于生长,而当培养基中存在高浓度的植物激素时则不然。有必要研究所有能够影响植物与内生菌之间相互作用的因素,以发挥它们作为植物生长促进剂的潜力。