设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
利用聚光太阳能将甲烷 (CH 4 ) 气体环境中的火山灰加热至 1,650 至 1,850 °C,以产生一氧化碳 (CO) 和氢气 (H 2 )。CO 和 H 2 流经甲烷化反应器,产生 CH 4 和水。水被泵送到水电解装置,产生 H 2 和 O 2 。总体而言,根据收集的水量,该系统能够产生 9-10% 的氧气产量。在更大的生命支持系统中,这种水可以以其基本水的形式用于多种用途,或电解成氢气和氧气。
‧‧‧jx Nippon石油和天然气勘探公公全球最大规模燃煤电厂营运的,2017年〜2021年累计捕捉380万吨co 2,皆用于eor
Product CF Report on low-carbon agricultural and rural development in China (2023) 中国农业农村低 碳发展报告
有机硅是世界上最重要和适应性的材料之一,用于数千种产品和应用中。硅和氧原子的骨干是有机硅化学的基础,允许形成硅氧烷。Siloxanes是基于硅,氧,氢和碳的原材料,是用于制造有机硅聚合物的关键构件。可以制作硅酮以抵抗水分,化学物质,热,冷和紫外线辐射。有机硅显示出许多独特的属性,这些特性可以润滑,密封,键,释放,defoam,sprine和封装。由于这些和其他属性,在诸如建筑,消费产品,电子,能源,医疗保健和运输等应用中,在数千种产品中使用了硅酮聚合物。
现在和可预见的将来部署的热泵将带有在快速变化时期的电网,因为数百吉瓦的新太阳能和风力发电都在线上。当我们建立更多的可再生能源时,当这些可变能源在盈余中有越来越多的可预测和频繁的时间。这为需要平衡发电和负载的电网运营商带来了挑战,并驱动了对储能和可调度资源进行投资的需求。这种动态还为灵活的负载,尤其是具有内在存储的弹性载荷创造了新的机会。hpwh比几乎任何其他最终用途都要适合该账单。HPWHS的储罐是其灵活性的关键,实质上是充当热电池。它们可以预热并保持热水数小时,具有较大储罐和/或混合阀的设备功能增强,可实现更高的温度存储。也可以设法柔性HPWH,以避免临界的高峰需求时间,从而减少对电网的压力。