免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
– 效率和灵活性之间的权衡 – 设计硬件加速器、将加速器连接到软件、自动硬件/软件分区 – 特定于应用程序的指令处理器、ASIP 设计的基本方法、可扩展处理器、自定义指令集的自动合成 – 用于硬件加速的高效软件架构 • 行为合成:将软件编译成
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
6.2在临床试验中报告的不良事件外,在批准后使用口服布德索德期间已经确定了以下不良反应。由于这些反应是根据不确定的人群自愿报告的,因此并非总是有可能可靠地估计其频率或与药物暴露建立因果关系。这些事件因其严重性,报告的频率或与UCERIS的因果关系或这些因素的组合而被选择用于包容。胃肠道疾病:腹泻,直肠出血一般疾病和行政部位状况:周围性水肿免疫系统疾病:过敏反应肌肉骨骼肌肉骨骼和结缔组织疾病障碍:肌肉/痉挛症:肌肉/痉挛性神经系统疾病:良性内部型心理症状,表现型脑部疾病,表现型疾病,表现疾病,疾病症状,疾病症状,表现疾病,疾病组织疾病:皮疹血管疾病:血压升高
通过胸部 X 光片进行预测:一项多中心研究 主要研究员:佐藤洋一 名古屋大学医学院 共同研究员:山本则夫 宫本整形外科医院 稻垣直哉 慈惠大学柏医院 家崎雄介 国立医院组织 名古屋医疗中心 高原俊介 兵库县立加古川医疗中心 尽管全世界患有骨质疏松症的患者数量正在增加,但目前的诊断和治疗还不够充分。在这项研究中,我们开发了一个深度学习模型来通过胸部 X 光片预测骨矿物质密度 (BMD) 和 T 值,胸部 X 光片是最常见、最容易获得且成本最低的医学影像检查方法之一。本研究中使用的数据集包含 17,899 张图像,这些图像对应于 2010 年至 2021 年期间在六家医院接受双能 X 射线吸收仪 (DXA) 和胸部 X 光检查的 10,102 名患者。对于学习标签,我们使用 (1) 髋部和腰椎的 BMD (g/cm2) 和 (2) 基于髋部或腰椎 T 分数的诊断(正常、骨质减少和骨质疏松症)。然后,我们通过胸部 X 光片、年龄和性别的集成学习来训练深度学习模型,以使用回归和 T 分数进行多类分类来预测 BMD。我们评估了以下两个指标来评估深度学习模型的性能:(1) 预测和真实 BMD 之间的相关性和 (2) 预测类别和真实类别之间 T 分数的一致性。BMD 预测的相关系数为髋部 = 0.75,腰椎 = 0.63。正常、骨质减少和骨质疏松诊断的 T 分数预测曲线下面积分别为 0.89、0.70 和 0.84。这些结果表明,所提出的深度学习模型可能适用于通过预测胸部 X 光片的 BMD 和 T 分数来筛查骨质疏松症患者。
可持续性和团结的主题代表性相对不足表明,这些主题可能目前没有受到人工智能主流伦理话语的关注。虽然有人可能会以从事人工智能工作的人通常不是气候科学家为借口来为其辩护,但可持续性相关原则的代表性不足尤其成问题,因为人工智能的部署需要大量的计算资源,而这又需要大量的能源消耗。然而,人工智能对环境的影响不仅涉及高碳足迹数字基础设施的负面影响,还包括利用人工智能造福生态系统和整个生物圈的可能性。
摘要:金属与其导电通道之间的有效欧姆接触是开发高性能Ga 2 O 3 基晶体管的关键步骤。与块体材料不同,退火过程中多余的热能会破坏低维材料本身。考虑到热预算问题,提出了一种可行且温和的解决方案(即含氩气的等离子体处理)来实现与(100)β-Ga 2 O 3 纳米片的有效欧姆结。首次用X射线光电子能谱比较研究了四种等离子体处理(即混合气体SF 6 /Ar,SF 6 /O 2 /Ar,SF 6 /O 2 和Ar)对(100)β-Ga 2 O 3 晶体的影响。通过最佳等离子体预处理(即氩等离子体,100 W,60 s),所得的 β -Ga 2 O 3 纳米片场效应晶体管(FET)无需任何后退火即可表现出有效的欧姆接触(即接触电阻 RC 为 104 Ω·mm),从而可获得具有竞争力的器件性能,例如高电流开/关比(> 10 7 )、低亚阈值摆幅( SS ,249 mV/dec)和可接受的场效应迁移率( µ eff ,~21.73 cm 2 V − 1 s − 1 )。通过使用重掺杂的 β -Ga 2 O 3 晶体(N e ,~10 20 cm − 3 )进行氩等离子体处理,接触电阻 RC 可进一步降低至 5.2 Ω·mm。这项工作为增强低维Ga2O3基晶体管的欧姆接触性能开辟了新的机会,并可进一步使其他基于氧化物的纳米器件受益。
摘要:据推测,通过 CaSi 2 拓扑脱插合成的二维硅纳米片 (Si-NS) 由 sp 3 杂化硅原子的弯曲层组成,这些硅原子与其他三个框架 Si 原子以及一个终端原子或功能团(例如 H、Cl 或 -OH 基)结合。在这里,我们应用 1 H{ 35 Cl} 和 29 Si{ 35 Cl} 共振回波饱和脉冲双共振 (RESPDOR) 固态 NMR 实验来直接确认 Si-NS 内氯化 Si 原子的存在。将观察到的 1 H{ 35 Cl} RESPDOR 失相绘制为 35 Cl 饱和脉冲偏移的函数,可以测量 35 Cl 中心跃迁 (CT) 四极粉末图和氯四极耦合常数 (CQ )。对 1 H{ 35 Cl} RESPDOR 失相曲线进行建模表明,Si-Si 层间距约为 6 Å。平面波 DFT 计算表明,Si-NS 的直接带隙跃迁随着氯化程度的增加而减小,这表明氯化是调整应用带隙的可行途径。
免疫系统疾病 未知 超敏反应 精神疾病 常见 意识模糊、幻觉、抑郁、失眠、欣快情绪、噩梦 神经系统疾病 非常常见:镇静、嗜睡 常见:头晕、人格改变、眩晕、头痛、共济失调、震颤、眼球震颤、耳鸣 罕见:感觉异常、构音障碍、味觉障碍、晕厥、运动障碍、昏迷、味觉障碍 未知:已有关于巴氯芬滥用、滥用和依赖的报道。已有关于使用巴氯芬治疗的患者自杀和自杀相关事件的报道(见第 4.4 节特殊警告和使用注意事项 – 精神和神经系统疾病)、脑病 眼部疾病 常见:调节障碍、视力障碍 心脏疾病 罕见:心律失常、心悸、胸痛