电视、智能手机和平板电脑等新兴设备正成为人们日常生活的一部分。2012 年,国际电信联盟无线电通信部门 (ITU-R) 为超高清显示器推荐了一种新的色域标准,称为 BT.2020(或 Rec.2020)。[1] 采用 Rec.2020 色域可以精细地再现自然界中的几乎所有颜色,这些颜色基于红、绿、蓝 (RGB) 三原色,国际照明委员会 (CIE) 色度坐标分别为 (0.708, 0.292)、(0.170, 0.797) 和 (0.131, 0.046)。在这种需求的驱动下,开发能够显示具有极窄发射光谱带宽和高效率的单色 RGB 颜色的新型发光材料和装置是一项至关重要的挑战。有机发光二极管 (OLED) 因其广泛的研究和开发目前被视为 UHD 显示器的主流技术。[2–8] 在过去的二十年里,随着新发光机制的出现,OLED 的效率得到了显著提高,特别是磷光 [5,8,9](第二代)和热激活延迟荧光 [7,10,11](TADF,第三代),这些机制使电子到光子转换的内部量子效率达到 ≈ 100%。尽管电致发光 (EL) 效率如此之高,但大多数传统 OLED 都存在宽带发射光谱的问题,半峰全宽 (FWHM) 通常为 > 50 nm 或更宽,从而导致 EL 的色纯度低。因此,在商用 OLED 显示器中,需要使用额外的彩色滤光片来选择性地透射原色,这不可避免地会导致光提取率下降,并导致器件的外部 EL 量子效率 (EQE) 降低。从器件的功耗角度来看,这种情况也是不利的。最近,以稠合多环 π 体系为特征的多共振诱导 TADF (MR-TADF) [12–24] 材料已成为克服传统 OLED 缺点的有机发射体的新范例,引发了研究兴趣的激增。事实上,与最先进的无机 LED 和量子点 LED 的情况一样,采用有机硼 MR-TADF 发射体的 OLED 已经实现了高效的窄带 EL
我们使用密度函数理论模拟的δ-5硼单层作为碱金属(AM)和碱 - 地球金属(AEM)离子电池的阳极材料的电化学性能。探索了Δ-5硼M on洛耶木中各种金属原子(M)的电子特性,吸附,扩散速率和存储行为。我们的研究表明,电子和金属离子传输(0.493-1.117 eV)具有较高的电导率和低激活屏障,表明快速充电/放电速率。此外,发现LI,Na和K的δ-5硼单层的理论能力大于商业石墨的理论能力。AM和AEM的平均开路电压相当低,在0.34-1.30 V的范围内。我们的结果表明,δ-5硼单层单层可能是锂离子和非锂离子可充电电池中有希望的阳极材料。关键字:2D材料;吸附;储能;模拟;扩散简介
六角硼硝酸盐(HBN)在过去十年中一直是众多研究工作的主题。是在HBN中产生光学活性缺陷,因为它们易于整合,例如在范德华(Van der Waals)异质结构及其室温光子发射。在HBN中创建此类缺陷的许多方法仍在研究中。在这项工作中,我们介绍了使用具有不同等离子体物种的远程等离子体在HBN中创建单个缺陷发射器的方法,并从统计上报告了结果。我们使用了氩气,氮和氧等离子体,并报告了由不同气体物种及其光学特性产生的发射器的统计数据。特别是,我们检查了血浆过程前后的去角质片的发射,而无需退火步骤,以避免产生不受血浆暴露引起的发射器。我们的发现表明,纯物理氩等离子体治疗是通过血浆暴露在HBN中创建光学活性缺陷发射器的最有希望的途径。
本演示文稿中的信息包括经修订的 1995 年私人证券诉讼改革法案所定义的“前瞻性陈述”。除历史事实陈述外,本演示文稿中有关我们的业务战略、计划、目标和宗旨的所有陈述均为前瞻性陈述。在本演示文稿中使用时,“相信”、“预计”、“期望”、“预期”、“估计”、“打算”、“预算”、“目标”、“宗旨”、“战略”、“计划”、“指导”、“展望”、“意图”、“可能”、“应该”、“可能”、“将”、“会”、“将会”、“将继续”、“可能导致”等词语和类似表达旨在识别前瞻性陈述,但并非所有前瞻性陈述都包含此类识别词。这些前瞻性陈述基于 5E 对未来事件的当前预期和假设,并基于有关未来事件结果和时间的当前可用信息。我们提醒您,这些前瞻性陈述受所有风险和不确定因素的影响,其中大多数难以预测,且许多超出我们的控制范围,这些风险和不确定因素与我们打算生产的关键材料的开采以及先进材料的生产和开发有关。这些风险包括但不限于:对我们继续经营的能力存在重大疑虑,并且需要在拟议发行后筹集大量额外资本;我们在硼酸盐和锂行业的经营历史有限,并且没有从我们资产的拟议开采业务中获得收入;我们需要大量额外融资才能继续经营和执行我们的业务计划,以及我们获取资本和金融市场的能力;我们是一家依赖于单一项目的勘探阶段公司,没有已知的 SK 1300 法规矿产储量,并且矿产资源估算存在固有的不确定性;我们缺乏矿产生产历史,以及实现我们的业务战略(包括我们的下游加工目标)相关的重大风险;我们迄今为止遭受的重大净经营亏损以及可预见的未来继续遭受亏损的计划;与 Fort Cady 项目开发有关的风险和不确定性,包括我们及时成功完成小型硼设施的能力;我们获得、维护和续签开发活动所需政府许可的能力,包括满足任何此类许可的所有强制性条件;某些削减开支措施的实施和预期收益,以及我们不时向美国证券交易委员会 (SEC) 提交的文件中规定的其他风险和不确定性。如果发生这些风险或不确定性中的一个或多个,或者基本假设被证明不正确,我们的实际结果和计划可能与前瞻性陈述中表达的结果和计划存在重大差异。对于本文所含的任何信息(包括预测、估计、目标和意见),我们不作任何明示或暗示的陈述或保证,也不应依赖这些信息,对于本文所含的任何错误、遗漏或失实陈述,我们不承担任何责任。请注意不要过分依赖任何前瞻性陈述,这些陈述仅代表本演示文稿发布之日的观点。除非适用法律另有要求,否则我们不承担更新任何前瞻性陈述的义务,也不打算更新任何前瞻性陈述,所有这些陈述均受本节陈述的明确限制,以反映本演示文稿发布之日后的事件或情况。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
p17自我传播高温合成产生的TIB2的PARK血浆烧结,Ahmet Turan 1(Yeditepe University,Yeditepe University,türkiye1)Filiz Cinar Sahin 2,Gultekin Goller 2,Gultekin Goller 2,OnuralpYücel2 p18 DFT 2 p18 dft分析了氢诱导的NAOK的NAOKON NAOK的氢化型(βBorion)(βbor的结构转化(日本1)Tadashi Ogitsu 2,Takanobu Hiroto 3,Wataru Hayami 3,Kohei Soga 4,Kaoru Kimura 5
[Cu(no 3)2(4,7-hphen)2](no 3)2(1)和[Cu(cf 3 so 3 So 3)(4,7-Phen)2(H 2 O)2] CF 3 SO 3(2),
摘要最近合成了二维(2D)Mbene板,称为硼片纸(MO 4 B 6 T Z),引起了人们对探索2D过渡金属硼烷的极大兴趣。Boridene具有有序的金属空缺排列,这对于其稳定性至关重要。采用第一原理计算,我们探索了具有不同空位浓度(V M)的硼硼稳定相,电子特性和催化能力。我们的结果表明,V m显着影响硼牛片的凝聚力。声子频谱和摘要分子动力学模拟揭示了无空位的硼苯基MO 6 B 6 T 6(T = O,-OH)的高稳定性,强调了它们的实验实现潜力。用NB,TA或W代替MO原子可以增强硼片的结构稳定性,从而鉴定出四种稳定变体:NB 6 B 6 F 6,TA 6 B 6 F 6 F 6,TA 6 B 6 O 6,W 6 B 6 B 6 B 6 O 6。这些硼片表现出金属行为,五个结构显示出接近零吉布斯的自由能,用于氢原子吸附,表明它们作为氢进化的催化剂