当今大多数产品都具有多个功能,但是这些功能是通过在系统中整合不同的单功能设备和/或材料来实现的。在一种单个材料中同时具有多个功能具有许多潜在的优势,例如一种可以存储能量,具有自感应或自我修复能力或任何其他身体功能的结构材料。这将带来质量和资源节省,使能源更高,因此更可持续。本文介绍了如何使用碳纤维的电气和电化学性质在高性能载荷中同时使用碳纤维来进行碳纤维的微型审查。通过该碳纤维复合材料还可以存储像锂离子电池一样的能量,用作应变传感器,具有电气控制的致动和形状,并用作能量收割机。
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
现代添加剂制造技术的积极发展,即基于融合沉积建模(FDM)的连续纤维挤出,表明了它们基于纤维聚合物复合材料创建高级材料的重要潜力。这些材料在航空业中广泛使用,但是它们用作飞机组件的使用受到满足许多要求的限制。这样的要求之一是火焰阻力。对于此类应用,至关重要的是,在集成之前,聚合物复合材料被认为符合类型证书。本研究论文提出了一项研究的结果,该研究的结果3D打印了具有多碳酸盐基质的连续增强聚合物复合材料,具有增强的机械性能,并进行了火焰耐药性测试,以证明印刷材料在航空应用中的可行性。该研究涵盖了一系列界面剪切强度,拉伸强度和火焰耐药性测试。该研究使用ASTM D638-10,ASTM D635-22,光学显微镜和浸入矩阵中的单个拖放测试的3D打印复合材料的详细表征。使用连续的碳纤维共截止使材料的拉伸强度(239.29 MPa)与未固化的聚碳酸酯(54.92 MPa)相比,增加了四倍。对印刷连续增强的聚碳酸酯的火焰耐药性的调查结果表明,该复合材料在每次火焰施用后的燃烧时间少于30秒。此外,双火施用后一系列五个样本的总燃烧时间不超过250秒,平均为56秒。获得的结果得出的结论是,连续加固的聚碳酸酯是用于飞机设计中的可行材料。为了进一步支持提出的印刷技术的使用,无人驾驶飞机的框架是由连续增强的聚碳酸酯制造的。
Mahgoub,S.,Cacciottolo,T.,Hydes,T.,Hardy,T.,McGinty,G.,Tavabie,O.,Cathcart,J.,Premathilaka,C.,Mukhopadhya,A.,A.国家NAFLD管理研究确定了2019年至2022年之间英国提供护理的差异。JHEP报告,5(12)。https://doi.org/10.1016/j.jhepr.2023.100897
无称重的生活方式饮食计划是一个均衡的计划,优先考虑富含纤维的食物,中等的碳水化合物摄入量和低脂含量。这种方法在预防各种疾病中的作用,例如某些癌症,高血压和成人发作的糖尿病。医疗专业人员通常会向寻求健康减肥解决方案的患者推荐无称重计划。南非心脏基金会自1986年以来就认可了该计划,开普敦大学医学院的运动单元的生物能学与无称重团队紧密合作,以确保科学有效性。无称重的生活方式饮食计划是为中等,稳定的体重减轻而不是快速减肥而设计的。这种方法与医疗当局的建议保持一致。该计划提供了均衡的营养成分,包括蛋白质,碳水化合物,纤维,维生素和矿物质。成员可以调整计划以适合其生活方式,食物偏好和预算。无称重提供从简单到复杂的各种食谱,可满足不同的饮食计划,配方,概况,预算和口味。该计划强调了营养和运动对成功减肥的重要性。无称重提供实用且易于访问的练习视频,以帮助会员在自己的空间中实现其健身目标。该计划识别个体差异并提供个性化方法。成员根据能源需求,概况和健康风险因素分配了公式。此公式确定食物摄入量的数量和时机,超过120种不同的公式可用于满足每个成员的独特需求。无称重在其列表中包含食物符号,以帮助会员比较食物并做出明智的选择。该计划旨在教育会员如何养成健康的饮食方式和习惯。在第一次小组会议上,小组负责人根据个人需求和目标分配了无称重的目标权重。将考虑您的个性化标准,包括年龄,性别,骨骼结构,身高,当前体重和生活方式习惯。您的目标体重将是现实,灵活的,并且在医学上接受的健康范围内。加入时,您会收到有关定制的无称重计划的详细说明,在您的旅途的任何阶段都可以重复。为了实现您的减肥目标,减肥的总量将分为10个可管理的步骤,每个步骤都有针对您的个人资料量身定制的新生活方式或饮食规则。您的小组负责人将指导您完成每个步骤,提供菜单计划,美味的食谱和干预卡,为特定的饮食需求和生活方式改变提供额外的支持。在不称重时,我们致力于帮助每个成员以善良,尊重和理解来实现自己的目标。您将完全访问我们的全面支持系统。健康饮食对于调节血糖水平至关重要。立即下载免费的C.A.P.E餐计划。选择合适的饮食可能会因为激烈的辩论和矛盾的意见而压倒性。饮食纤维在产生健康的肠道微生物组中起关键作用。本质上,饮食旨在促进结构化的健康饮食习惯并减少卡路里的摄入量。C.A.P.E进餐计划旨在帮助您通过优化影响体内脂肪调节的代谢途径来实现成功的体重减轻,同时改善整体健康状况。我们的方法可确保更好的减肥结果,而不会使您面临健康风险。现代饮食科学结合了创新的概念,对与肥胖相关疾病的传统观点具有挑战性。在医学营养研究所,我们与超重患者和研究项目合作的经验导致了有关影响体重减轻的因素的新发现。多酚在调节身体脂肪积累中的作用已得到强调,研究表明它们对整体健康有积极影响。对微生物在确定脂肪储存和代谢方面发挥作用的积极作用的越来越多也正在出现。十年前由我们的医疗保健组织开发的C.A.P.E进餐计划,旨在通过简化的计划来解决这些问题,该计划结合了关键原则,例如转向食品质量,调整大量营养素成分并优化血糖控制。专注于减轻胰岛素抵抗而不是简单地减少脂肪摄入,我们相信个人可以从更平衡的体重管理方法中受益。减少碳水化合物的摄入量同时增加蛋白质消耗是成功减肥策略的关键。较高的蛋白质摄入量已被证明可以控制饥饿并有助于减肥。富含omega-3的油也有助于更健康的肠道微生物组。蛋白质会立即代谢处理,从而通过热生成增加代谢率,即使在进食后,该过程也会燃烧卡路里。尽管传统饮食社区的最初批评,但研究一直证明了高蛋白饮食对能量消耗和实际体重减轻的好处。C.A.P.E进餐计划强调了富含多酚的各种植物食品的消费,这些食物提供了独特的健康益处,例如改善免疫功能,调节食欲和降低慢性疾病风险。研究人员发现,由于其较高的热效应,消耗蛋白质与碳水化合物或脂肪的卡路里相同的卡路里会导致能量较少。这意味着高蛋白饮食会随着时间的流逝而导致严重的热量缺陷。对饱腹感的一项研究表明,增加蛋白质摄入可显着减少饥饿感并增加饱腹感,从而更轻松地坚持减肥饮食。高蛋白饮食不仅有助于短期体重减轻,而且还会导致更有利的脂肪损失而不是肌肉损失。此外,没有证据表明富含蛋白质的饮食会对患有正常肾脏健康的个体的肾功能负面影响。最近的研究还表明,通常在高度加工的蔬菜产品中发现的不饱和脂肪没有提供预期的心血管益处,甚至由于其高反式脂肪含量而可能有害。脂溶性化合物使食物具有丰富的味道,没有它可以淡淡的味道。但是,我们警告不要过多的脂肪摄入,因为高水平会导致体重增加。这种理解的转变可以在增加蛋白质摄入量以减轻体重时会采取更大的饮食选择,包括饱和脂肪稍微饱和的食物,通常也更美味。基于植物的分子也受益于被脂肪食用,因为这可以增强其吸收到体内。关于血液胆固醇和心血管风险,研究表明,较高的蛋白质摄入可能不会升高胆固醇水平。实际上,用蛋白质代替碳水化合物甚至可能对胆固醇水平有益。此外,对研究的综述发现蛋白质对骨骼健康没有负面影响,一些研究甚至显示出对骨密度的积极影响。饱和脂肪摄入与心血管疾病之间的关系是辩论的。有些人声称增加脂肪摄入实际上可以降低心脏病的风险,但我们的研究表明,高脂饮食仍可能增加血液胆固醇和甘油三酸酯水平,这与增加心血管疾病的风险增加有关。我们建议主要从坚果,种子,鱼类和橄榄油等“真实食物来源”中食用脂肪,因为这些脂肪往往是单或多不饱和的。从乳制品中得出的饱和脂肪似乎没有以前想象的危害。多酚是由植物产生的一组不同的化学物质,包括非氟烷类,类黄酮和单宁。众所周知的多酚包括红酒中的白藜芦醇...由于我们对加工食品的依赖越来越多,我们通常会错过几个世纪以来一直是人类健康基石的必需营养素。在细胞水平上,人类和植物共享许多生化过程,这意味着植物中发现的化合物可以在美国执行相似的功能。这包括多酚,这些多酚负责植物的香气,味道和颜色。多酚具有多种结构,具有各种生物学目的,例如作用于信号分子,抗氧化剂和帮助预防感染。研究表明,消耗富含多酚的植物和更好的体重管理之间的某些低碳水化合物之间存在很强的相关性。具体而言,研究强调了花色苷和类黄酮的重要性,这些素是在浆果,苹果,梨,大豆,花椰菜和绿叶蔬菜等深色水果中发现的。这些化合物已被证明可以防止体重增加并调节体内的脂肪储存。多酚通过减少炎症,食欲,卡路里摄取和血糖水平来起作用,同时还增加了热生成和能量消耗。他们可以通过减少脂肪细胞的数量并增加脂肪分解来直接缓和脂肪储存。此外,多酚可以影响脂肪和蛋白质的吸收和消化率,从而减慢了营养的吸收。最大化多酚的好处的最佳策略是消费各种植物物种。即使每天每天一顿许多水果和蔬菜都可以提供大量的这些基本化合物,尤其是在食用原始化合物时。吃富含纤维的食物可以帮助降低胆固醇水平,血压和体重,同时还可以调节血糖水平。也值得注意的是,应该避免去皮,因为它通常会减少彩色部分或水果和蔬菜皮中存在的独特多酚的数量。纤维摄入量在维持整体健康方面起着至关重要的作用,尤其是降低慢性疾病(例如心血管疾病,癌症,代谢综合征和2型糖尿病)的风险。由数万亿微生物组成的肠道微生物组对于消化,营养吸收和能量代谢至关重要。肠道中微生物的健康平衡可以帮助体重管理并降低慢性疾病的风险。富含水果,蔬菜,全谷物和补充剂等纤维的饮食可以帮助增加饱腹感并减少对不健康零食的渴望。建议每天至少消耗20-35克纤维,以获得其众多健康益处。研究表明,肠道微生物组在确定个人的代谢健康,慢性疾病,免疫力和整体幸福感方面起着重要作用。肠道中存在的微生物的特定比率和类型会影响体重增加或损失,以及慢性疾病(例如过敏)的发展。研究表明,微生物组与各种慢性疾病有关,包括心血管疾病,癌症,类风湿关节炎,代谢综合征和肥胖症。通过饮食改善微生物组健康至关重要,低纤维,高纤维植物性饮食最有效。益生元,例如纤维和其他植物化学物质,可以更好地改变肠道微生物组。流体摄入量对于适当的肠功能,脂肪氧化和体重减轻至关重要。建议每天至少喝2升水,进餐前30分钟消耗500毫升,以增加静息代谢并减少食欲。避免由于其高糖含量而避免果汁,软饮料,甜味饮料,运动饮料,能量饮料,调味水和维生素水。糖必须排除在饮食之外,包括糖,果糖,糖浆,蜂蜜,糖果,冰淇淋,甜点,巧克力,甜味酱和“糖尿病巧克力和糖果”等精制糖。当涉及人造甜味剂(例如,阿斯巴甜,苯丙氨酸,甲氯酸酯,甜叶菊和木糖醇)时,应避免使用它们。通常认为有效的糖替代品,新的研究表明,它们都对微生物组产生负面影响,可能导致体内脂肪过多。此外,单独的甜味就可以触发食欲或渴望甜食。因此,建议避免这些人造化学物质。另一方面,调味品和香料可以在不加糖或盐的情况下为餐点增添风味。大蒜,胡椒和辣椒等草药可以提升烹饪体验。但是,由于糖和盐的含量高,应适度食用番茄酱和酸辣酱。姜黄,姜,肉桂,黑胡椒和辣椒是包含有价值的植物化学物质的特别有益的香料。在心血管健康方面,应避免过多的盐。一个单元相当于120毫升葡萄酒,50毫升甜点葡萄酒,200毫升啤酒或280毫升Lite Beer。关于饮酒,必须将摄入量限制为男性每周5个单位,而女性则必须获得最佳减肥效果。Antagolin是一种旨在对抗胰岛素抵抗的植物衍生产品,可以帮助优化新陈代谢和血液胰岛素水平,从而控制体内脂肪。它包含分子,例如减轻胰岛素抵抗的多酚,对糖尿病前和2型糖尿病个体有益。减少心血管疾病的机会,遵循C.A.P.E餐食计划,该计划结合了改善心血管健康方面的可靠趋势。旨在改善血液胆固醇的补充剂,例如瑞chol,也有助于稳定甘油三酸酯水平。减肥是一个需要奉献和毅力的长期过程。保持良好的心情对于成功至关重要,因为它促进了乐观和自我控制,使我们能够热情解决责任。另一方面,压力和挫败感可能会使我们的目标脱轨,使食欲控制一个重大挑战。为了克服这一障碍,我们建议使用神经化,其中含有植物性化学物质,例如Roseroot提取物和肌醇,有助于减轻压力并改善情绪健康。此外,它包含镁和锌,以获得最佳的大脑功能。平衡的进餐计划对于减肥和维护也是必不可少的。下载我们免费的胰岛素友好型(C.A.P.E)进餐计划,以开始您的成功旅程。这些研究强调了蛋白质在饱腹感,能量学,体重减轻和整体健康中的作用。参考文献:各种科学研究支持蛋白质在体重管理中的重要性,包括发表在《营养年度评论》,《美国临床营养杂志》,《英国营养杂志》等中的年度评论中。大量的科学研究研究了饮食,营养和健康结果之间的关系。这些研究发现,某些饮食成分,例如低碳水化合物饮食,高蛋白质摄入量以及增加水果和蔬菜的消费,对肥胖,高脂血症,骨骼健康和体重管理会产生重大影响。具体而言,研究表明,减少碳水化合物的摄入量可以改善体重减轻和甘油三酸酯水平降低。高蛋白质的摄入量与改善骨骼健康有关,而纤维消耗的增加可能有助于调节血糖水平并降低2型糖尿病的风险。此外,研究发现,水果和蔬菜(例如多酚)中的某些生物活性化合物可以调节炎症并改善整体健康状况。还发现肠道微生物组在维持健康和调节各种生理过程中起着至关重要的作用。但是,并非所有饮食成分都同样有益。例如,碳水化合物的高摄入量可能导致体重增加并增加心血管疾病的风险。相反,过度食用某些营养物质会对整体健康产生负面影响。人类肠道微生物组在包括肥胖症在内的各种健康状况中起着至关重要的作用。总而言之,科学文献表明,富含全食,水果,蔬菜和瘦蛋白质的均衡饮食可以帮助促进最佳的健康结果,并降低肥胖,糖尿病和心血管疾病等慢性疾病的风险。在几项研究中探索了肠道微生物组与健康之间的关系(1-47)。研究人员发现,人类肠道微生物,热量负荷和营养吸收之间的关联(3),磷脂酰胆碱的肠道菌群代谢促进了心血管疾病(4、5)。此外,L-肉碱的肠道微生物代谢(一种红肉中的营养素)与动脉粥样硬化的风险增加有关(6)。此外,研究还研究了肠道微生物群作为治疗肥胖和糖尿病等代谢疾病的靶标(7-11)的靶标(7-11),并发现了对微生物组在这些疾病中的作用的见解(12,13)。还探索了长期饮食模式与肠道微生物肠型之间的联系(14),以及饮食干预对肠道微生物基因丰富度的影响(15)。其他研究研究了不同类型的饮食油如何调节肠内毒素的转运和餐后内毒素血症(16),并发现肠道菌群组成与体重减轻引起的体内脂肪含量变化之间的相关性(17)。最后,研究调查了水摄入过多对体重,体重指数,体内脂肪和超重女性参与者的食欲的影响(18)。
碳纤维增强聚合物(CFRP)复合材料在各个行业中都是必不可少的,这是由于其出色的强度与重量比率,出色的耐用性和较高的刚度。但是,CFRP的有效回收仍然是一个重大挑战,需要开发先进技术和更可持续的废物管理解决方案。在这项研究中,我们提出了一种将CFRP废物升级为大量碳纤维复合闪光石墨烯(CFC-FG)的有效且可再现的方法,该方法是通过成本效益的闪光灯焦耳加热(FJH)在毫秒范围内的。所得的闪光石墨烯的广泛特征是形态,结构,光谱和化学分析。这些研究揭示了高度多孔的层状结构,其氧官能团和涡轮质石墨结构低。重要的结构特征,包括拉曼光谱中的独特d'峰和在选定区域电子衍射(SAED)中观察到的椭圆形图案,强调了其独特的特性。这些CFC-FG的这些组合属性在两电子氧还原反应(2e-ORR)中对过氧化氢(H 2 O 2)产生了出色的电化学性能(2e-ORR)。CFC-FG在0.1 M KOH中显示出近100%的选择性和良好的活性,稳定性测试证实了性能的保留,使其成为实际电气合成应用的有前途的候选人。这项工作的核心概念是为H 2 O 2电气合成的回收,可持续的Elec trocatalyst开发出循环经济并支持全球可持续性目标。
Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review Wei Zou, 1 Xinbo Zheng, 2 Xiaodong Hu, 3 Jintao Huang, 2,* Guanghong Wang 1,* and Zhanhu Guo 4,* Abstract Carbon fiber reinforced polymer composites (CFRP) have excellent comprehensive mechanical properties, and become one of the轻巧组件的主要方法。在汽车行业,航空业和其他领域,它受到了越来越多的关注。为了提高生产率和质量,并更好地利用碳纤维增强聚合物复合材料,尤其是对于碳纤维增强的热塑性聚合物复合材料,本文首先回顾了碳纤维增强的碳纤维塑造热塑性聚合物聚合物复合材料的研究状态,最终讨论了该领域的本领域。
摘要:作为一种新型的二维(2D)过渡金属碳化物,氮化物或氮化碳,MXENE具有出色的物理结构和出色的机械性能,电导率和磁性特性,因此在不同的领域中广泛使用,例如电化学能量存储,微波炉吸收,微波吸收,电磁,电磁层。碳纤维(CF)是通过热处理和高温氧化制备的,导致表面光滑和缺乏活性基团,这不利于碳纤维和基质之间的粘附,从而产生碳纤维复合材料的界面性质。纳米颗粒以修饰碳纤维的表面以改善其粗糙度并提供活性基团。因此,通过其范德华力或氢,离子和共价键将MXENE引入CF表面,以改善CF和矩阵之间的机械互锁效果,从而改善复合材料的界面特性或启用功能应用。在本综述中,总结了各种合成方法,MXENE的结构特征和特性,并讨论了将MXENE引入MXENE通过不同技术将MXENE引入碳纤维表面修饰的研究进展,以增强界面性能和复合材料的功能应用。最后,提出了MXENE面临的挑战以及其在碳纤维复合材料中应用的发展前景。