中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
Yonghwi Kim,CécileFabre,Jean Cauzid。 使用便携式Libs仪器对碳酸盐进行定量分析:首先应用于单矿物和矿物混合物。 Spectrochimica Acta B部分:原子光谱学,2022,191,pp.106397。 10.1016/j.sab.2022.106397。 hal-04022023Yonghwi Kim,CécileFabre,Jean Cauzid。使用便携式Libs仪器对碳酸盐进行定量分析:首先应用于单矿物和矿物混合物。Spectrochimica Acta B部分:原子光谱学,2022,191,pp.106397。10.1016/j.sab.2022.106397。hal-04022023
二氧化碳去除(CDR)是不可避免的,并且几乎可以肯定需要将温暖限制为2°C。海洋交换二氧化碳(CO 2)的含量可以使大使人的能力允许coRBONITY允许coRBORNODICE cOR均能倒入2°coarbority coarbory of CoR的co coRONET cORSTORITY cOR均可提供的co coRONED coRONET cORSTORITY cORSTORITY cORSTORITY cOR cOR均可供应。从大气中删除其他CO 2。存在早期技术在大气中使用海洋,但通常情况下,大气CO 2去除这些技术会刺激其活性的下游。验证与这些技术相关的碳去除,同时在评估方法和定价时至关重要。This study briefly reviews the challenges associated with verifying the carbon removal associated with non-biological (abiotic) engineered marine CDR approaches, specifically Ocean Alkalinity Enhancement and Direct Ocean Carbon Capture and Storage, and presents the findings from a workshop held with interested parties spanning industry to government, focused on their collective requirements for the Monitoring, Reporting, and Verification (MRV) of carbon removal.我们发现,有可能就非生物海洋MRV的一系列共同原则达成共识,但是确定以当今的理解和技术来实现这一MRV可能会非常昂贵。我们讨论了降低海洋MRV成本的焦点区域,并强调了最终监管机构刺激对所需工作的投资的MRV标准规范的重要性。高质量的MRV对于正确定价任何CO 2删除很重要,但是我们确定MRV方法中的可访问性和透明度对于实现MRV对社会的更广泛利益也是关键。
1纽瓦克大学生物学研究所微生物学实验室,瑞士纽瓦克(Neuch),瑞士; anaele.simon@gmail.com(A.S。); guillaume.cailleau@unine.ch(G.C.); saskia.bindschedler@unine.ch(S.B.); pilar.junier@unine.ch(p.j.)2洛桑大学地面动力学研究所生物科学实验室,瑞士洛桑1015; finaritraran@gmail.com(F.R.); eric.verrecchia@unil.ch(E.V.)3 Max Planck陆地微生物学研究所,德国Marburg 35043 4 EcoleSupérirerieure des Sciences Agronsiques,Universitéd'antananarivoUniversition,Antananarivo,Antananarivo 101,马达加斯加; g.rajoelison@yahoo.fr 5 Laboratoire des Radio-Esopopes,Madagascar Antananarivo 101的Antanarivo大学; herintsitohaina.razakamanarivo@gmail.com *通信:vincent.herve8@gmail.com;电话。: +49-6421178122
图1来自DEL MAR和SMM800的甲烷渗氧化甲烷的厌氧甲烷氧化活性。原位AOM指标和CH 3 D速率测量值表征低到高AOM活性碳酸盐。a)渗透碳酸盐收集站点Del Mar(浅绿色标记)和圣莫尼卡Mound 800(SMM800,深绿色标记)位于相距129公里。从Google Maps获得的地图。b)生物地球化学渗透碳酸盐设置。c)c)del mar露头,R1和R2的原位图像起源于顶部,R3和R4,从较近的沉积物。d)R9,来自附近的Del Mar区域,硫化垫有氧化垫。e)烟囱和f)原塑料是两个类似化学的结构,是从圣莫尼卡丘800的不同侧收集的。烟囱恢复后用甲烷积极冒泡。对于比例尺,图像中的红色激光点相距29厘米。g)基于:CH 3 D + SO 4 2-HCO 3- + HS- + HDO,在与单氧化甲烷的缺氧孵育中测量的厌氧甲烷激活率(NMOL D CM -3 D -1)。我们在五个时间点上测量了水的ΔD,除非另有说明,否则从线性增加的速率计算了速率。错误条显示了从线性回归计算出的K的标准误差。分别将带有不同颜色的R9,R9.1和R9.2的两个子样本孵育为AOM速率。无法重建用于费率的R9件的方向。在最后一个时间点(T4)硫化物进行测量,并在R9.1,Chimlet顶部,中间,底部和原子质表面中检测到。在检测下,冲浪。*在T4上仅检测到背景高于背景的氘,表明R2和R3。,B.D。的非线性增加。表面,int。内部,BTM。底部
关键矿物质和金属的主要沉积物(例如铜,钴,铅和锌)通常发生在碳酸盐沉积物内的断层,断裂或其他高孔隙区域的直接附近。这种矿化可以在这些碳酸盐托管的渗透性网络中混合到现有的液体中,使断层,断裂或高孔隙率区域的形成日期。所得的液体混合以及与周围碳酸盐岩的相关化学交换在系统内部产生不平衡,从而诱导矿化。流体岩石相互作用实验表明,随着流体中的CA含量的增加,随着它溶解在周围的碳酸盐中,它可以作为Zn-PB矿物沉淀的催化剂[1],并在与H 2 s含H 2 s碳含量时产生与Spherite(Zns)降水有关的缓冲效果。这些发现与研究H 2 S-地形系统中的合并腐蚀和尺度的实验中的爆发岩沉淀之间的联系是一致的[2]。数值建模显示出对碳酸盐中的baryte形成的相似作用[3]。
摘要将废物塑料化学升级为高价值增添的产品,例如单体,燃料或细化学物质是减轻大规模终止塑料的不利影响的有希望的策略。poly(Bisphenol A碳酸盐)(BPA-PC)由于其出色的整体性能而脱颖而出。但是,其耐用性和潜在的环境毒性使得其回收势在必行。尽管在我们的审查之前已经进行了许多有关塑料退化的评论,但由于该领域的快速发展,塑料退化的进度需要不断更新和汇总。同时,BPA-PC作为重要的工程塑料,先前的评论仅着眼于将其去聚合到单体中,而错过了其进一步转换为最终化学物质。在这篇简洁的综述中,我们总结了BPA-PC化学升级到有价值的化学物质的最新发展,并强调了各种催化剂和试剂的作用。一些最具使用的化学升级策略,例如酗酒,氨基溶解和
t | +61 8 6188 8181 E | admin@argosyminerals.com.au w | www.argosyminerals.com.au前瞻性陈述:有关公司矿产物业计划的陈述是前瞻性陈述。无法保证公司的矿产制定计划将按预期进行。不能保证该公司能够确认矿藏的存在,任何矿化化都将被证明是经济的,或者将成功开发在公司的任何矿产物业上。警告性陈述:Argosy确认,它不知道任何新的信息或数据对原始市场公告中包含的信息产生重大影响,并且对于矿产资源或矿石储量的情况,所有物质假设和技术参数都基于所有实质性假设和技术参数,这是相关市场公告中的估计值继续应用并没有实质性更改的。Argosy确认,提出主管人的发现的形式和背景尚未从原始市场公告中进行重大修改。
植物防御启动是一种创新的作物保护方法。Yang等人突出显示的各种生物学,物理和化学刺激。[6],可以诱导植物免疫系统的引发状态,而与根殖民化微生物的有益相互作用,如Yu等人所指出的那样。[7],已被确定为建立此启动状态的潜在触发器。这使得植物能够记住与有益微生物的先前相互作用,从而使它们能够更快,更有针对性的防御能力防止入侵病原体[6,7]。这种称为启动的准备就可以增强植物的防御机制,在攻击时提供更有效的病原体保护[8]。与直接的防御激活不同,仅在需要时仅激活防御力来启动资源,从而避免对植物生长和发育产生负面影响[9-14]。此外,启动在具有挑战性的环境中提供广谱保护,以最低的健身成本提高生产力[15]。
摘要:基于碳酸盐的捕获溶液中的CO 2需要大量的能量输入。通常提出用(BI)碳酸盐电解代替此步骤,作为共同生产CO/Syngas的有效替代方案。在这里,我们通过利用过程,多物理学,微动力学和技术经济模型来评估将空气接触器与(BI)碳酸盐电解液直接整合的可行性。我们表明,在接触器流出物中,CO 3 2-与HCO 3-的共呈现大大降低了电解核的性能,并最终导致CO 2捕获分数降低至≤1%。此外,我们估计(BI)碳酸盐电解的合适废水需要比常规需要的接触器大5-14倍,从而导致过程经济不利。值得注意的是,我们表明捕获溶剂内部(BI)碳酸盐电解液的再生不足以恢复CO 2。因此,我们建议将该途径在操作上可行的过程修改。总体而言,这项工作阐明了使用(BI)碳酸盐电解的集成直接空气捕获的实际操作。a