9 每克至少含 3.2x10 个活孢子 (CFU,菌落形成单位) 的地衣芽孢杆菌制剂,以及作为载体的碳酸钙。 用途 用作家禽(肉鸡、火鸡和蛋鸡)和猪的直接饲喂微生物,旨在提供活的、天然存在的微生物来源,确保刺激体重增加和提高饲料转化效率。有助于控制肉鸡坏死性肠炎。B-Act® 仅用作地衣芽孢杆菌的稳定来源。 使用说明 根据法律规定,用户必须小心谨慎,必要时获取专家建议,以避免在按照标签指示以外的方式使用产品时产生不必要的疼痛和痛苦。 用于胃肠道健康:与家禽和猪的配合饲料充分混合后口服,比例为每吨成品饲料 500 克。对于坏死性肠炎:以每吨成品饲料 2 公斤的比例添加到肉鸡的配合饲料中。建议在动物生长发育的各个阶段用于家禽和猪的饮食中。混合说明
°F 华氏度 A 农业 AIS 水生入侵物种 AR 农业住宅 BD 海滩开发 熊湖 BCT 熊湖 博纳维尔 割喉鳟 熊湖 CMP 熊湖综合管理计划 BHCA 鸟类栖息地保护区 BLM 美国土地管理局 BLM 熊湖码头 BMP 最佳管理实践 BRAG 熊河政府协会 C 商业 CaCO3 碳酸钙 CBC 圣诞节鸟类计数 CCP 熊湖国家野生动物保护区和牛津沼泽水禽生产区综合保护计划 CCRS 切尼溪休息站 cfs 立方英尺每秒 海岸警卫队 美国海岸警卫队 CS 根据保护协议接受特殊管理的物种,无需列入联邦名单 CWA 清洁水法案 CWMAs 合作杂草管理区 DOGM 犹他州石油、天然气和采矿司 DOR 犹他州娱乐司 DSP 犹他州州立公园司
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
实现净碳中立性是缓解气候变化的全球目标。建筑和建筑部门负责大约40%的温室气体排放,需要具有新颖的零碳技术。本文研究了将3D混凝土印刷(3DCP)和碳捕获和固存(CCS)相结合的协同潜力,以提高构建中的净碳中立性。通过实施不同的二氧化碳喷涂方式,这项研究表明二氧化碳(CO 2)的摄取和碳酸钙沉淀的结晶度(CACO 3)。发现该方法的性能在很大程度上依赖于适当的打印参数和固化条件。室固定样品表现出最高的CO 2吸收,但机械强度最低,而环境固定样品则显示了相反的趋势。也必须注意,这项研究中CO 2暴露的持续时间相对较短,从而导致CO 2摄取和强度增长的限制。尽管如此,这项研究强调了协同结合3DCP和CCS技术在净碳中立性方面的潜力,强调了建筑部门在实现全球排放减少目标中的关键作用。
我30年前被分配到劳动力,我的教授对我说的第一件事是:“自工业革命以来的100年,CO 2在大气中的集中度增加了70 ppm。以这种速度,它将在不到100年的时间内达到400 ppm!” (当时是350 ppm)和我开始了一项生物矿物研究研究,以查看使用钙质藻类的光合作用和钙化可以减少多少CO 2。光合作用是碳中性的(转化为有机物的CO 2等于使用有机物产生的CO 2),但是钙化(CO 2作为碳酸钙沉淀)是碳还原。我目前正在研究将金属离子转化为复合晶体的细菌。我的大梦想是找到可以与半导管晶体相同特性合成晶体的细菌,并将将来用生物处理代替半强化的制造过程,这可能会大大减少CO 2排放。半导体在数字化的社会中变得越来越重要,但是在制造过程中减少CO 2排放也是一个重要问题。当他们似乎不可能时,我们应该放弃梦想吗?自从我30年前成为研究人员以来,CO 2又增加了70 ppm。如果没有人做任何事情,不仅什么都不会改变,它也会变得越来越糟。
生物矿物是由活生物体形成的有机矿物质复合材料。它们是这些生物中最坚硬,最坚硬的组织,通常是多晶,其介质结构(包括纳米和微观的结晶石大小,形状,布置和方向)可能会改变戏剧性。海洋生物矿物可能是碳酸钙(CACO 3)多晶型物,晶体结构不同。出乎意料的是,诸如珊瑚骨骼和Nacre等不同的Caco 3生物矿物具有相似的特征:相邻的晶体略微不良。使用依赖性的成像对比度映射(PIC映射)在微观和纳米级处进行定量记录,并且轻微的不良对比始终在1°和40°之间。纳米识别表明,多晶生物矿物质和非生物合成球状晶体都比单晶地质库属强。分子尺度上双晶的分子动力学(MD)模拟表明,当双晶分别通过10°,20°和30°不当定向后,后臂,vathite和方解石表现出韧性最大值,这表明单独的错误可能会增加分流性的较小的差异。可以利用轻微的定向训练来合成生物启发的材料,这些材料仅需要一种材料,不限于特定的自上而下的建筑,并且可以通过有机分子(例如,阿司匹林,巧克力),聚合物,金属和生物剂以外的有机分子(例如,阿司匹林,巧克力)的自我组装来实现。
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
摘要。细胞外聚合物物质(EPS)是许多上层和本元环境中重要的有机碳储层。EP的产生与植物和皮科普兰顿的生长密切相关。EPS通过阳离子的结合并用作最小值的成核位点在碳酸盐沉淀中起关键作用。水柱中碳酸钙沉淀的大规模发作(Whiting事件)已与蓝细菌开花有关,包括Synechococococococococococococococcus spp。触发这些降水事件的机制仍在争论中。我们提出的是,在指数和固定生长阶段产生的蓝细菌EPS在白色的形成中起着至关重要的作用。这项研究的目的是研究2个月蓝细菌生长的EPS产生,模仿开花。在Syechococcus spp的不同生长阶段检查了EP的产生和特征。使用各种技术,例如傅立叶变换红外(FT-IR)表格,以及比色和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)测定法。我们通过体外降水实验进一步评估了EPS在碳酸盐预紧次的预言中的潜在作用。在早期和晚期阶段产生的EPS含有比指数阶段产生的EPS中的更大的负电荷组。con,固定相EPS的较高Ca 2 +结合的依次导致形成了较大量的较小
锂盐水沉积物是富含溶解锂的盐水地下水的积累。这些本质上很常见,但是世界上只有一些选择的区域在干旱地区的封闭盆地中包含盐水。必须满足以利润提取锂盐的条件。也有地热(大约3%)和油田(也占约3%)的盐水资源,但这些占存款的一小部分。需要钻孔才能进入地下盐水沉积物,该盐水矿床通常包含每升约200至1600毫克(mg/l)Li。然后将盐水泵送到表面并分布成蒸发池。根据气候,盐水在蒸发池中保留了几个月或数年的时间,直到大多数液态水含量通过太阳蒸发去除,链中的每个池塘都具有更高的LI浓度。在具有碳酸钙的化学植物中开始加工以提取锂产物,例如碳酸锂和金属锂需要1%至2%的锂。锂盐水的需求如下:一种干旱的气候,具有封闭的干燥盆地,地热活动,具有合适的锂源岩石,一个或多个适当的含水层(地下水层)以及足够的时间在经济上浓缩盐水。这些条件会导致适当的锂盐水储量在非常特定的区域。智利和阿根廷的薪水在680-1570 mg/l范围内具有最高的锂浓度。
摘要:由于污染和降低成本的因素,废料的再利用最近变得越来越有吸引力。使用废料可以减少环境污染和产品成本,从而促进可持续发展。大约 95% 的含碳酸钙废蛋壳最终未被利用而被填埋。这些蛋壳是一种生物废物,在转化为 CaO 后可以重新用作各种应用的催化电极材料,包括超级电容器。同样,如果回收不当,使用过的废电池电极材料也会对环境造成危害。各种类型的电池,特别是锂离子电池,在世界范围内得到广泛使用。考虑到其经济效益低,回收旧锂离子电池的重要性已降低。这就需要找到替代方法来回收和再利用废旧电池的石墨棒。因此,本研究报告了通过高温煅烧将废蛋壳转化为氧化钙,并从废旧电池中提取纳米石墨以应用于储能领域。使用 XRD、SEM、TEM 和 XPS 技术对 CaO 和 CaO/石墨的结构、形态和化学成分进行了表征。对制备的 CaO/石墨纳米复合材料在电化学超级电容器应用中的效率进行了评估。与单独的 CaO 相比,从废旧锂离子电池中获得的 CaO 及其与石墨粉的复合材料在储能应用中表现出更好的性能。将这些废料用于电化学储能和转换设备可实现更便宜、更环保和可持续的工艺。这种方法不仅有助于储能,而且还通过减少垃圾填埋场来促进废物管理的可持续性。