3数据分析19 3.1数据收集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3.1.1 PV电源输出数据。。。。。。。。。。。。。。。。。。。。。。。。。。20 3.1.2历史天气数据。。。。。。。。。。。。。。。。。。。。。。。。。20 3.1.3数值天气预测数据。。。。。。。。。。。。。。。。。。。21 3.2数据预处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.1 PV电源数据集清洁过程。。。。。。。。。。。。。。。。。。。23 3.2.2历史天气数据集清洁过程。。。。。。。。。。。。。。24 3.2.3反弹NWP数据集清洁过程。。。。。。。。。。。。。。。。。24 3.2.4 Meteomatics NWP数据集清洁过程。。。。。。。。。。。。。。27 3.2.5数据转换。。。。。。。。。。。。。。。。。。。。。。。。。。。27 3.3探索性数据分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.3.1实际与预测的天气参数。。。。。。。28 3.3.2 PV功率与预测辐照度。。。。。。。。。。。30 3.3.3功能工程。。。。。。。。。。。。。。。。。。。。。。。。。。。32
表 1. 基准情景比较 ...................................................................................................................................... 24 表 2. 天然气发电情景比较 ...................................................................................................................................... 27 表 3. EfW 情景 ...................................................................................................................................................... 30 表 4. 水泥情景 ...................................................................................................................................................... 34 表 5. 质量和影响评级定义 ............................................................................................................................. 36 表 6. 基于影响和质量评级的不确定性评级摘要 ............................................................................................. 36 表 7. 模型设置假设 ...................................................................................................................................... 36 表 8. 资本成本假设 ............................................................................................................................................. 37 表 9. 运营成本假设 ............................................................................................................................................. 38 表 10. 天然气基准 – 配置摘要 ............................................................................................................................. 40 表 11. 天然气基准 – 资本成本 ............................................................................................................................. 43 表 12. 天然气基准 – 年平均运营成本........................................................................................... 44 表 13. 天然气基准 – CO 2 捕获的平准成本 .............................................................................................. 44 表 14. 天然气基准 – 对产品成本的影响 ........................................................................................................ 45 表 15. 天然气基准 – 建模假设摘要 ...................................................................................................... 46 表 16. 高级胺 – 天然气配置摘要 ............................................................................................................. 48 表 17. 高级胺 – 天然气资本成本 ............................................................................................................. 51 表 18. 高级胺 – 天然气年平均运营成本 ............................................................................................. 52 表 19. 高级胺 – 天然气 CO 2 捕获的平准成本 ............................................................................................. 52 表 20. 高级胺 – 天然气对产品成本的影响 ............................................................................................. 54高级胺 – 气体建模假设摘要 ................................................................................................................ 55 表 22. 热碳酸钾 – 气体配置摘要 .............................................................................................................. 57 表 23. 热碳酸钾 – 气体资本成本 ................................................................................................................ 60 表 24. 热碳酸钾 – 气体年平均运营成本 ...................................................................................................... 61 表 25. 热碳酸钾 – 气体 CO 2 捕获平准化成本 ............................................................................................. 61 表 26. 热碳酸钾 – 气体对产品成本的影响 ............................................................................................. 63 表 27. 热碳酸钾 – 气体建模假设摘要 ............................................................................................................. 64 表 28. EfW 基准 - 配置摘要 ............................................................................................................................. 66 表 29. EfW 基准 - 资本成本 ............................................................................................................................. 70 表 30. EfW 基准 - 年平均运营成本 ............................................................................................................. 71 表31. EfW 基准 - CO 2 捕获的平准化成本 ...................................................................................................... 71 表 32. EfW 基准 - 对产品成本的影响 .............................................................................................................. 72 表 33. EfW 基准 - 建模假设摘要 ............................................................................................................. 73 表 34. 高级胺 - EfW 配置摘要 ...................................................................................................................... 75 表 35. 高级胺 - EfW 资本成本 ...................................................................................................................... 79 表 36. 高级胺 - EfW 年平均运营成本 ............................................................................................................. 80 表 37. 高级胺 - EfW CO 2 捕获的平准化成本 ............................................................................................. 80 表 38. 高级胺 - EfW 对产品成本的影响 ............................................................................................................. 82 表 39. 高级胺 - EfW 建模假设摘要 ............................................................................................................. 83 表 40. 热碳酸钾 - EfW 配置摘要 ................................................................................................ 85 表 41. 热碳酸钾 – EfW 资本成本 .................................................................................................. 88 表 42.热碳酸钾 – EfW 平均年运营成本 .............................................................................................. 89 表 43. 热碳酸钾 – EfW CO 2 捕获平准化成本 .............................................................................. 90 表 44. 热碳酸钾 – EfW 对产品成本的影响 ............................................................................................. 91 表 45. 热碳酸钾 – EfW 建模假设摘要 ............................................................................................. 92 表 46. 非胺溶剂 – EfW 配置摘要 ............................................................................................................. 94 表 47. 非胺溶剂 – EfW 资本成本 ............................................................................................................. 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ............................................................................................. 97 表 49. 非胺溶剂 – EfW CO 2 捕获平准化成本 ............................................................................................. 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 .............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 年平均运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ...................................................................................................... 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111非胺溶剂 – EfW 资本成本 ...................................................................................................................... 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ...................................................................................................... 97 表 49. 非胺溶剂 – EfW CO 2 捕获的平准化成本 ...................................................................................... 97 表 50. 非胺溶剂 – EfW 对产品成本的影响 ...................................................................................................... 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 ............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 平均年运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获的平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ................................................................................................ 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111非胺溶剂 – EfW 资本成本 ...................................................................................................................... 96 表 48. 非胺溶剂 – EfW 平均年运营成本 ...................................................................................................... 97 表 49. 非胺溶剂 – EfW CO 2 捕获的平准化成本 ...................................................................................... 97 表 50. 非胺溶剂 – EfW 对产品成本的影响 ...................................................................................................... 99 表 51. 非胺溶剂 – EfW 建模假设摘要 ...................................................................................................... 100 表 52. 固体吸附剂 – EfW 配置摘要 ............................................................................................................. 102 表 53. 固体吸附剂 – EfW 资本成本 ...................................................................................................................... 105 表 54. 固体吸附剂 – EfW 平均年运营成本 ...................................................................................................... 106 表 55. 固体吸附剂 – EfW CO 2 捕获的平准化成本 ............................................................................................. 107 表 56. 固体吸附剂 – EfW 对产品成本的影响 ...................................................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 ................................................................................................ 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 ................................................................................................ 111........................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 .............................................................................................. 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 .............................................................................................. 111........................................................................... 108 表 57. 固体吸附剂 – EfW 建模假设摘要 .............................................................................................. 109 表 58. 熔融碳酸盐燃料电池 – EfW 配置摘要 .............................................................................................. 111
co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
碳酸钾 K 2 CO 3 被认为是建筑环境中最有前途的热化学存储材料之一。尽管人们对大气(开放系统)条件下的水合/脱水行为已经有很多了解,但对纯水蒸气条件下(封闭真空系统)的这一过程知之甚少。本文首次研究了纯水蒸气条件下 K 2 CO 3 复合材料的平衡行为和反应动力学,如封闭真空系统中的平衡行为和反应动力学。本文研究了真空条件下 K 2 CO 3 复合材料的亚稳态行为,并将其与大气条件下的亚稳态行为进行了比较。研究发现,亚稳态区也存在于真空条件下,但亚稳态区的诱导时间要短得多,这表明真空条件下的成核速率更快。此外,研究了封闭系统中惰性气体的影响,并表明去除所有不凝性气体源至关重要。最后,在循环测量中,结果表明 K 2 CO 3 在多循环实验中是稳定的,得出结论,它是一种适合基于封闭反应堆概念的热电池材料。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
碳酸钾 K 2 CO 3 被认为是建筑环境中最有前途的热化学存储材料之一。尽管人们对大气(开放系统)条件下的水合/脱水行为已经有很多了解,但对纯水蒸气条件下(封闭真空系统)的这一过程知之甚少。本文首次研究了纯水蒸气条件下 K 2 CO 3 复合材料的平衡行为和反应动力学,如封闭真空系统中的平衡行为和反应动力学。本文研究了真空条件下 K 2 CO 3 复合材料的亚稳态行为,并将其与大气条件下的亚稳态行为进行了比较。研究发现,亚稳态区也存在于真空条件下,但亚稳态区的诱导时间要短得多,这表明真空条件下的成核速率更快。此外,研究了封闭系统中惰性气体的影响,并表明去除所有不凝性气体源至关重要。最后,在循环测量中,结果表明 K 2 CO 3 在多循环实验中是稳定的,得出结论,它是一种适合基于封闭反应堆概念的热电池材料。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
聚(芳基醚),形成了大量的大环寡聚物。[8,9]在反应的初始阶段,双足与碳酸钠或碳酸钾(或氢氧化钾)反应,从而产生了许多盐沉淀,从而阻碍了反应混合物的搅拌。由于盐的溶解度差而产生的高稀释条件,在反应混合物中形成了环状化合物。这意味着反应中的速率控制步骤是盐的溶解。Miyatake和Hlil发现,可以使用高速均质器可以改善这种反应系统中的环化问题。高强度混合增加了盐的表面积,因此有助于其溶解。[9]在几分钟内获得具有低分子量分布的非常高的分子量多形成量。与合成的线性聚(芳基醚)的典型反应相反,该特定梯子聚合物的形成更为复杂。在方案1中可以看出,两个单体都有四个反应性组。因此,四苯酚盐的溶解度甚至低于双苯酚和循环的溶解度,更容易形成。另外,一个单体中多个反应组的存在增加了交联的可能性。也观察到,如果它们的分子量高于10 000 da,则聚合物或循环将从反应混合物(如果将DMAC或DMF用作溶剂)中沉淀出来。我们发现在这一点上,对于较低的单体和低聚物浓度,常见的级增长聚合反应进一步进行并不容易,因为循环形成更容易形成。此外,交联发生迅速发生,因为OH和F组从沉淀的聚合物表面随机伸展,其链条折叠,线圈和包装在一起,并与其他OH和F组随机反应。
将氢用作能量载体是一种有前途的解决方案,可实现在全球能量混合物中增加使用可再生能源的过渡。然而,氢气混合物具有高反应性,用于爆炸保护的常规技术对氢系统的适用性有限。因此,与基于常规的碳氢化合物燃料相比,实现相同水平的氢能系统安全性并不是一件直接的。过去几十年来,开发了具有固体抑制剂的蒸气云爆炸的创新溶液,例如碳酸氢钠和碳酸钾(Roosendans and Hoorelbeke,2019年)。与镜头相比,这两种物质都是无毒的,不可燃料的,低成本的,对环境的无害。尽管固体抑制剂对碳氢化合物可能非常有效(Babushok和Tsang,2000),但实验表明,相同的化合物对于抑制氢气混合物的抑制不是很有效。缺少碳意味着氢燃烧与碳氢化合物固有不同,但是,碳氢化合物的燃烧包括涉及氢气混合物燃烧的基本反应。当暴露于钠或钾化合物(Roosendans,2018年)时,这些基本反应发生了变化。基于这些基本反应的化学动力学模拟表明,钾化合物应大大降低火焰速度。 因此,需要更多的抑制剂来有效抑制预混合的氢气火焰。表明,钾化合物应大大降低火焰速度。因此,需要更多的抑制剂来有效抑制预混合的氢气火焰。与烃燃烧相比,相同的模拟显示自由基的产生明显更高。为了使固体抑制剂有效,该化合物必须在火焰区中蒸发,并且该过程似乎是有效抑制氢爆炸的主要障碍。本文提出了由化学动力学软件的专用实验和仿真介绍的,这些软件详细介绍了先前的发现,并提高了对氢气燃烧中固体抑制剂的基本力学的理解。