(2023年8月12日收到; 2024年4月19日修订; 2024年4月21日接受)。摘要:在各种工业应用中,碳钢的腐蚀是一个重要的问题,有效的腐蚀抑制剂的发展对于缓解此问题至关重要。近年来,由于其独特的特性和环保性,生物活性金属复合物已成为有前途的腐蚀候选者。旨在研究腐蚀抑制剂的活性和有效性。通常,抑制剂在表面吸附特性上工作。在这里,我们专注于通过理论方法研究金属表面上的抑制剂吸附活性。Schiff碱化合物与金属表面的相互作用非常好。抑制剂的相互作用是通过密度功能理论研究借助 *dxvvldq dqg $ ffhou \ v 0dwhuldo 6wxglr)urp wkh fdofxodwlrq ri +202 /802 /802ǻ(ǻ1dqg fukui seltifity confffect function 2 complect formity conffffle 理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。
Reevesia是一家在Malvaceae S.L.家族中的东亚北美分离属。并包括大约25种。该属内的关系几乎没有理解。在这里,比较了15种代表12种雷维亚物种的塑料,以便更好地了解该属内及其属内属属的物种束缚和系统发育关系。新测序的质体111,532至161之间,长度为945 bp。基因组包含114个独特的基因,其中18个在倒重复序列(IRS)中重复。这些塑料的基因含量几乎相同。所有蛋白质编码基因在Reevesia塑料中的纯化选择均低于相比。鉴定出的前十个高变量区域,SSR和长重复序列是未来种群遗传学和系统发育研究的潜在分子标记。基于整个质体的系统发育分析证实了Reevesia的单性别,并且与杜里(Durio)(传统的bombacaceae)在亚家族螺旋体系中保持了密切的关系,但与形态上相似的杂物属杂种和稳固(传统的固有剂)没有相似的属。Reevesia中的系统发育关系表明,新定义的两种物种,R。pubescens和R. thyrseidea不是单一的。六个分类群,R。Membranacea,R。Xuefengensis,R。Botingensis,R。Lofouensis,R。Longipetiolata和R. pycnantha被认为是认可的。
摘要:已合成2,5-双(4-吡啶基)-1,3,4- - 奥沙唑(4-Pox),并研究了1M HCl溶液中使用重量范围的1M HCl溶液中的碳钢(CS)作为有机耐受抑制剂的有机耐抑制剂。浓度并随着温度培养基的增加而降低。A mixture of physisorption and chemisorption is proposed for the corrosion inhibition mechanism and the process followed the kinetic/thermodynamic model of Langmuir in the temperature range from 303 to 343 K. The adsorption and kinetic parameters for CS/4-POX/1 M HCl system were calculated from experimental gravimetric data and the interpretation of the results are given.DFT计算,并应用于分析合成抑制剂与CS表面的相互作用。此外,还计算了福克(Fukui)指数,以确定最合理的亲核和亲电攻击位点。
Carbon steel is the most widely used metallic material in industry owing to its unique mechanical properties, availability, and low cost.1然而,当暴露于侵袭性环境(例如酸性溶液)时,碳钢的显着性较弱是其耐腐蚀性较差的耐腐蚀性,例如酸性溶液,这些溶液用于各种过程,例如清洁,腌制,淡化,下降和酸化。1,2 To prevent the corrosion of carbon steel, di ff erent methods have been used, including the use of corrosion inhibitors.Organic corrosion inhibitors showed good e ffi ciency and have great potential.3,4 However, their toxicity and envi- ronmental pollution are issues of great concern.The search for less toxic, environmentally friendly, and renewable corrosion inhibitors has become a research focus in this eld.5
从不同温度下,大麦种子提取物对1M盐酸在1M盐酸中腐蚀的作用是从它们作为绿色抑制剂在清洁和降水过程中的潜在用途的角度研究的。使用50%乙醇/水(VOL)溶液进行提取。使用了两种提取方法:浸泡和超声。通过通过电化学方法(Potentiodynalicallization(Tafel曲线)和电化学耐药性光谱)研究吸附和腐蚀过程来研究抑制剂的抑制作用机制。研究结果没有表明提取方法对抑制行为没有影响,抑制作用作为浓度的函数显示,抑制效率的抑制效率显着提高到浓度为400 ppm,然后在这两种方法中都与其无关。然而,浸泡方法的抑制效率在800 ppm时(87.01%,而超声方法为80%)。对该提取物的抑制机制的研究表明化学吸附的可能性。抑制活性随温度增加。抑制活性随温度增加。
腐蚀是普遍的挑战。这项全面的研究深入研究了2-甲基-4-丙基-1,3-氧化氢(MPO)作为暴露于盐酸(HCL)溶液的碳钢的腐蚀抑制剂的有效性。调查采用减肥技术来评估不同持续时间(从1到48小时)和浓度(0.1至1 mm)的抑制剂的性能。在0.5 mm的浓度下,抑制剂表现出令人印象深刻的抑制效率,在5小时的暴露期间,在303 K时的87.6%到333 K时的92.9%。此外,在303、313、323和333 K的温度下检查温度对腐蚀抑制过程的影响,显示出很大的抑制效率。使用密度功能理论(DFT)方法的量子化学计算阐明了MPO与金属表面之间的分子相互作用。值得注意的是,EHOMO(最高占据分子轨道能),Elumo(最低的无占分子轨道能量),EGAP(能量间隙),总硬度(η),电负性(χ)和电子分数转变型原子(ΔN)揭示了有价值的Insights corrosions cororosion and cororosion cororosion and cororosion corrosion。结果强调了MPO作为HCL环境中低碳钢的有效腐蚀抑制剂的潜力,为工业环境中更有效的预防腐蚀策略奠定了基础。
1。引言减少腐蚀带来的重大经济损失的最流行策略是使用有机抑制剂[1-5]。此外,正在进行研究以确定在非常低浓度的环境中是否可以使用腐蚀抑制剂。为了在低浓度的特定抑制剂的存在下达到高水平的保护效率,二级分子和/或离子通常需要通过合作吸附或腐蚀金属表面上的合作吸附或络合来增强抑制剂的吸附[6-10]。在当前工作中,检查了硫库的吸附及其在碳钢表面存在的锌离子存在下的潜在增强。酰胺化合物从历史上被认为是腐蚀强大的抑制剂[11-14]。因此,提高硫库抑制剂溶液对锌离子的吸附可能会导致高抑制效率。
抗逆转,在整个行业面临着重大挑战。这项研究探讨了4-(2-汞1,3,4-氧二唑-5-基)吡啶(MOP)作为HCL溶液中低碳钢的腐蚀抑制剂的潜力。值得注意的是,在1 M HCl中,MOP在最佳浓度为0.5 mm时表现出令人印象深刻的抑制效率。该研究包括全面的分析,包括不同的抑制剂浓度(0.1至1 mm),浸没持续时间(1至48小时)和温度(303至333 K)。腐蚀率定量采用减肥测量。此外,吸附等温线揭示了MOP与低碳钢表面的相互作用。重要的是,密度功能理论(DFT)在原子量表上脱离了复杂的电子和分子相互作用。这些发现强调了MOP的特殊腐蚀抑制能力,使其成为HCL环境中低压钢腐蚀控制的有前途的候选者。从减肥测量,吸附等温线和DFT分析中的综合见解提供了对抑制机制的整体理解,为腐蚀管理中的实际应用打开了大门。prog。色着色剂外套。17(2024),207-226©颜色科学与技术研究所。
绿色抑制剂。但是,也有某些例外。例如,无机稀有元素(灯笼盐)成分具有低毒性和良好的生物降解性。然而,有机绿色腐蚀抑制剂的起源可以包括许多碱,例如离子液体,药物,植物提取物和合成抑制剂(图2)。具体来说,天然产品,例如植物(例如油及其衍生物)。因此,由于植物可用,可生物降解,可用于减少污染量,因此被认为是化合物的重要自然来源。此外,可以轻松提取植物,以低成本和生态系统的低污染。此外,它们可以在酸性溶液中发挥作用,因为它们具有多功能化学,物理和生物学特征。大多数绿色抑制剂可以在室温下通过物理和化学相互作用吸附到金属表面[33]。对环境影响低的腐蚀抑制剂在各种工程应用中为环境带来了重大的经济利益。植物通过将其作为腐蚀抑制剂重新利用,从而构成一个显着的环境挑战,从而减少了它们的整体环境影响。关于这些天然产品的非毒性,它们的应用对人类健康的危害仍然不那么危害。的确,提取方法和应用程序不会引入任何可能冒着人类健康风险的污染物或危险物质。因此,除了使用各种表征技术和电化学测试的有效性外,还必须评估其与工业应用的安全性和兼容性[34]。
摘要 - 当前的论文围绕新合成的生态友好的吡唑衍生物的进行,N - ((3,5二甲基-1H-1H-吡唑-1-甲基)甲基)-4-硝基苯胺(L5),作为碳钢(CS)的腐蚀剂(CS)在摩尔羟基含量(CS)中。化学和电化学技术,即减肥测量(WL),电力动力学极化(PDP)和电化学障碍光谱光谱(EIS)均用于评估L5分子的效率,以及量子化学方法。有机化合物被确认为良好的抗腐蚀化合物,在10 -3 m时最大抑制效率(IE%)为95.1%。根据PDP结果,抑制剂L5可作为混合型抑制剂。对温度影响的评估表明,L5在CS上化学吸附。L5在CS表面上的吸附似乎遵循Langmuir模型。扫描电子显微镜(SEM-EDX)和紫外可见度揭示了屏障膜的构成,限制了腐蚀离子进入CS表面的可及性。理论研究