量子传感和计量包括那些可以利用量子系统对环境影响的高灵敏度来更精确地测量物理特性和时间的应用(例如磁传感器和热传感器、重力仪、无 GPS 导航仪、时钟;TRL 为 4-9)。总体而言,虽然一些量子应用目前已经在商业上可用(例如 QKD 和 QRNG、量子退火器、量子模拟、原子钟和一些量子传感器),但第二波量子技术的当前使用仍然相对有限。这是由于技术限制以及技术性能和成本之间的权衡。需要进一步的进展。例如,在量子通信中,需要技术突破来开发量子中继器:这将是长距离 QKD、分布式量子计算和量子互联网的关键一步。关于量子计算,一个障碍是减轻随机波动,这些波动可能在处理过程中偶尔翻转或随机化量子位的状态。量子软件场景非常活跃,但相当分散:主要努力是定义语言,使程序员能够在高抽象层次上工作。与此同时,国际社会正在认识到这些量子技术在实现突破时在多个市场中的颠覆性潜力。
资格 B.ED. (SCI.)、硕士、博士 主要专业领域 凝聚态物理学、固体物理学、材料物理学和材料科学 个人数据 出生地 布西亚,肯尼亚 国籍 肯尼亚人 职业 讲师/研究科学家 联系地址 201-40601,BONDO 电话 0721828604 电子邮件 gobarasa@yahoo .com ORCID 0000-0002-6036-9147 研究出版物链接 https://www.researchgate.net/profile/Godfrey-Barasa 1. 经验总结 先前的研究项目包括 1)实验制造、结构和表面表征(通过 XRD、SEM、TEM、Raman、用于高效绿色能源应用(包括等离子体催化)的各种精细复合/合金纳米多孔微结构材料的光学和电子性能研究(包括原位电化学研究)。2)CdO 掺杂 ZnO 纳米复合材料的结构和光学研究。3)多晶陶瓷/稀土复合磁性材料的合成及其磁热效应研究;交换偏置场的负磁化和符号反转;自旋重新取向过程中磁熵变随温度的变化,即结构和磁场辅助切换效应,用于自旋电子器件(如磁传感器)和数据存储应用。(使用的表征工具是 XRD、XRF、SEM、XPS,直流磁化由振动样品磁强计-VSM 在物理性能测量系统(PPMS、Quantum Design)上测量。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
摘要 — 物联网系统使日常技术比以往任何时候都更加数字化,残疾人可能会感到被排斥在外。眼球运动/眨眼等免提手势方法可以增强与现代技术的互动。这项工作展示了通过眨眼进行眼睑手势控制,使用可穿戴磁系统,该系统由眼睑上的柔性磁条和带有模拟前端电路的自旋电子磁传感器组成。为了检测眨眼,将灵敏度为 11mV/V/Oe 的隧道磁阻 (TMR) 传感器嵌入眼镜框中。为了成功检测眼睑上直径 6 毫米、厚度 1 毫米的磁条产生的小磁场,设计了一个传感器读出电路来放大收集到的信号并消除外部噪声和偏移。该电路能够滤波 <0.5 Hz 的低频和直流偏移。高于 >28 Hz 的高频会被滤除磁场和眼睑运动噪声。每个 TMR 传感器电路都配备有固定增益放大器,用于检测毫米级磁条的低磁场。眨眼可以在设定的时间范围内重复,并且由于会检测到双眼睑,因此可以使用多种命令组合进行分类。基于磁场模拟结果,该电路经过了模拟,并显示出高重复性和稳定性,可以根据幅度阈值对眨眼进行分类。因此,可以在蓝牙微控制器上缩放和分类信号,该微控制器能够连接到各种支持蓝牙的设备,以便残疾人士与外部技术进行通信。
我们提出了一种基于热荧光的低频场测量和成像新方法。在介绍了该技术的原理和实验装置之后,我们展示了通过记录发光磁性薄膜的荧光信号,可以在相对较大的表面上几乎瞬间获得磁场制图。各种来源发射的电磁场的表征是一个重要问题,无论是民用还是国防应用(磁线圈、天线、电信、雷达、民用和军用航空、医学等)。可以通过单个探针执行电磁场测量以获得空间局部结果。对于可视化磁场的空间分布(历史上从沉积在一张纸上的铁屑中获得),有几种已知技术可用 [1 - 3]。使用移动探针的扫描系统是一种常见的商业解决方案 [4]。随着法拉第磁光成像 [5] 的发展,以及电子显微镜中洛伦兹或全息技术 [6] 的小规模发展,静态磁场的直接成像已经发展起来。集成电路和超大规模集成 (VSLI) 设备的近场测量可以通过使用空间分辨率为几百微米或更低的小探针扫描来解决 [6,7]。这种分辨率确实非常适合 EMC 和 EMI 测量,因此受到国际标准 (IEC61967 和 IEC62132) 的推荐 [8]。对于动态场观测,适当的方法是基于频闪成像,通过铁磁传感器的磁化变化实时演变磁场,直至亚纳秒级(例如,参见 M.R. 的评论。Freeman 等人。[10]。然而,这些技术对于常规表征来说相当复杂且耗时。在相对较短的时间内获得磁场映射更加困难。具有竞争力的
用于手术导航的无线惯性磁力仪 电磁跟踪 (EMT) 是临床环境中无视线仪器跟踪和导航的黄金标准。与 GPS 导航类似,医疗器械的位置在 MRI 或 CT 生成的患者身体“地图”上进行跟踪,而无需依赖 X 射线成像,因为 X 射线成像在持续使用的情况下对患者和临床医生都有害。当前的 EMT 技术在标准医疗手术室环境中性能下降。附近的金属物体会引入磁失真误差,从而损害患者体内的准确跟踪。此外,最关键的微创干预需要越来越小的仪器,例如腔内手术,其中使用人体的自然结构(例如静脉和气道)进入手术部位。因此,需要更小的 EMT 传感器来满足这些现代临床需求。我的目标是在小型化、无线操作和使用新的微型传感器更简单地集成到医疗设备方面推进 EMT 技术。利用现代硅制造技术,EMT 传感器的微型化将为将这些微型传感器集成到尖端导管设计中铺平道路。现有磁传感器和智能手机中常见的惯性测量功能的传感器融合将用于减轻材料磁畸变的影响。最后,将探索这些组合传感器单元的无线操作。这些传感器将集成到 Integer 开发的导管和新设备的临床前验证中,并将与法国斯特拉斯堡的图像引导手术研究所 (IHU) 和挪威特隆赫姆的工业和技术研究基金会 (SINTEF) 合作进行,我们的团队与他们有着密切的合作关系。这项研究将加速 EMT 在临床环境中的整合,并改善临床医生和患者的手术结果。
摘要:与磁致伸缩系数高但矫顽场大的多晶 Fe 基合金和磁致伸缩系数较小的 Co 基非晶合金(λ s = − 3 至 − 5 ppm)相比,Fe 基非晶材料具有高饱和磁致伸缩系数(λ s = 20–40 ppm)和低矫顽场,为磁传感器、执行器和磁致伸缩换能器提供了新的机会。增材层制造 (ALM) 为更复杂的净成型设计提供了一种新的制造方法。本文回顾了用于制造 Fe 基非晶磁性材料的两种不同的 ALM 技术,包括结构和磁性能。选择性激光熔化 (SLM)——一种粉末床熔合技术——和激光工程净成型 (LENS)——一种定向能量沉积方法——均已用于制造非晶态合金,因为它们在文献中具有高可用性和低成本。利用 SLM 技术引入了两种不同的扫描策略。第一种策略是双扫描策略,可实现 96% 的最大相对密度和 1.22 T 的相应磁饱和度。它还将玻璃相含量提高了 47% 的数量级,并提高了磁性能(将矫顽力降低至 1591.5 A/m,将磁导率提高至 100 Hz 时的 100 左右)。第二种是新颖的扫描策略,涉及两步熔化:初步激光熔化和短脉冲非晶化。这使非晶相分数增加到高达 89.6%,相对密度增加到 94.1%,并将矫顽力降低到 238 A/m。另一方面,尽管 LENS 技术具有提供优异的机械性能、可控的成分和微观结构等优点,但由于其几何精度较低(0.25 毫米)且表面质量较低,因此在非晶态合金生产中的应用并不像 SLM 那样广泛。因此,它通常用于复杂程度较低的大型部件及其修复,由于尺寸限制而限制了非晶态合金的生产。本文全面回顾了这些用于 Fe 基非晶态磁性材料的技术。
美国加利福尼亚州圣克拉拉,2016 年 9 月 7 日 - Crocus Technology 是一家领先的隧道磁阻传感器 (TMR) 开发商,其产品基于专有和专利的 Magnetic Logic Unit™ (MLU) 技术,该公司宣布推出 CT51x 数字开关,这是该公司推出的一系列全集成数字传感器中的第一款产品。该系列设备适用于各种应用,具有较大的气隙、较小的磁场和显著较低的功耗。CT51x 可实现高精度位置检测、控制和电源切换功能,具有高灵敏度和可靠性,这是系统设计人员对当今物联网、消费和工业应用的要求。“随着智能产品对智能传感的需求不断增长,CT51x 系列设备为现有和新兴应用提供了设计灵活性和成本节约:物联网、可穿戴设备、家电、智能电表、智能锁和其他消费产品,”Crocus Technology 首席销售和营销官 Zack Deiri 表示。“市场正倾向于智能固态磁性开关,这种开关为电池供电的应用提供更高的可靠性、更快的频率响应和极低功耗,体积更小,如 CT51x。”当用作接近开关时,CT51x 可以检测入侵报警系统和家电中的窗户或门的移动。数字开关还可以激活移动设备(如笔记本电脑)的唤醒和睡眠模式,并具有盖子打开/关闭检测功能,功耗极低。CT51x 还可测量电池供电的智能流量计的转速,并可作为智能公用事业仪表的防篡改措施,每年损失超过 10 亿美元。Crocus CT51x TMR 系列传感器与 CMOS 工艺完全集成,可创建完全单片解决方案。在功率效率方面,该设备可以执行开关、定位和旋转测量,同时平均消耗不到 350nA。Crocus CT51x 系列设备已投入生产,提供不同的输出配置以及 JEDEC 标准 SOT-23 和 TO-92 封装。这些产品可通过我们的授权分销商在全球范围内订购:Future Electronics、Mouser、Comtech 和 Weikeng International。关于 Crocus Technology Crocus Technology 基于专有和专利的 Magnetic Logic Unit™ (MLU) 技术开发和提供磁传感器和嵌入式内存解决方案。此外,Crocus 还提供以下服务:
与步行期间发生的所有其他同时运动隔离。可以生成单个关节和肢体运动作为步态相的函数的图形图。动力学是用于描述引起或控制运动的因素的术语。评估动力学涉及使用物理学和生物力学原理来解释观察到的运动学模式,并产生描述在正常步态和异常步态分析过程中产生的力的分析。步态分析已被提议作为手术计划的帮助,主要用于脑瘫,也针对其他条件,例如俱乐部。此外,正在研究步态分析作为计划康复策略(即矫形核心器件)的一种手段,以针对与脑瘫,衰老,中风,脊髓损伤等相关的门诊问题。步态分析是对协调肌肉功能的定量评估。对于接受步态疾病手术的脑瘫患者,一项随机对照试验并未发现作为手术计划的一部分接受步态分析的患者的健康结果的改善,而一项非随机对照试验并未发现利用参数的改善。在脑瘫患者和其他疾病患者中进行的几项研究表明,步态分析建议会影响治疗决策,但是这些决定对健康结果的影响尚不清楚。基于临床审查员的投入,步态分析在全面的情况下,对于与脑瘫有关的步态疾病儿童进行手术之前的计划可能是医学上必要的。对于所有其他迹象,由于没有可靠的功效,步态分析在医学上无需在医学上被认为是不需要的。编码Medicare Advantage计划和商业产品以下CPT代码在接受以下诊断代码之前被认为是医学上必要的*:96000通过视频敲击和3D Kinematics 96001通过视频敲击和3D Kinematics通过视频基于计算机的运动分析进行全面的基于计算机的运动分析;步行96002动态表面肌电图,步行或其他功能活动期间的动态足底压力测量,1-12肌肉96003动态细丝肌电图,步行或其他功能活动期间,1 Muscle 96004医师审查和解释全面的基于计算机的运动植物压力测量,动态表面电线,动态电线以及其他功能性的电线,或其他功能性的电线和其他功能性,并进行了动态电线和其他功能。*ICD-10-CM代码:G80.0-G80.9相关策略无发布提供商更新,3月提供商更新,2023年4月提供商更新,2022年6月提供商更新,2021年12月1221年12月提供商更新,2021年1月,参考文献1.Cutti A,Ferrari A,Garofalo P等。“ Outwalk”:基于惯性和磁传感器的临床步态分析方案。Med Biol Eng Comput 2010; 48(1):17-25。2。Vanden noort JC,Ferrari A,Cutti Ag等。通过惯性传感器和磁性传感器患有脑瘫儿童的步态分析。Med Biol Eng Comput 2013; 51(4):377-86。
项目详细信息:手性是生命的定义特征,保留在进化中,并深深地嵌入生物过程中。所有基本生命的基础,例如蛋白质和DNA,都是手性的。传统上与结构特性有关,手性在过去的二十年中已成为独特的电子现象的来源,共同称为手性诱导的自旋选择性(CISS)。这些影响源于显着的观察结果,即通过手性分子的电子表现出自旋极化。虽然尚未完全了解基本机制,但CISS在实验上有充分的文献记录,尤其是在金属手续 - 中间连接处。最近,在纯有机二元分子中也观察到了它,并确定其超出接口的相关性。ciss被认为对生物学和技术具有深远的影响。效果可以通过减少反向散射或将自旋依赖性项引入手性结构的相互作用能来提高电子转移效率。CISS还可以直接影响化学反应吗?激进对机理(RPM)是一种描述自由基对的自旋依赖性重组的量子过程,它提供了将CISS生成的自旋极化转换为化学结果的诱人可能性。rpm描述了对自由基成对的量子自旋运动如何导致磁场效应,并通过提供磁受伤的基础的机械基础来获得一定的流行 - 许多动物物种感知地震磁场的能力 - 形成了量化生物学的核心培养基。2。我们假设将CISS耦合到rpm可以揭示新的量子行为,从而增强了激进对的弱磁场灵敏度,并保护其自旋动力学免受环境噪声引起的脱谐解。该项目探讨了CISS与RPM结合,可以加深我们对磁受伤,发现其他量子生物学现象的理解,并激发创新的生物自发性应用。研究目标:1。提前量子生物学:研究CISS调节的自由基对自旋动力学如何有助于磁体受体和其他磁场效应,以解决传统RPM模型中的局限性。利用技术的生物映射:探索自旋偏振电子传递如何在诸如光伏,电解碳固定和水分裂等技术中改善激进/极性驱动的过程。方法论:该跨学科项目通过以下方法整合了量子物理,计算化学和生物物理学:1。自旋动力学建模:开发分子动力学知情的模型,以CISS驱动的自由基对反应中的开放系统自旋动力学模型,在生物磁磁传感器加密组合体,DNA和相关系统中。结合了逼真的自旋松弛机制和自由基间相互作用。2。螺旋结构中的自旋极化:与Banerjee教授(UCLA)合作,使用相对论Kohn-Sham密度功能理论评估生物和合成螺旋结构的自旋极化潜力。3。技术应用:将CISS和RPM与扩散输入相结合