受控的具有最高频率和最短波长的相干旋转波是旋转和镁质的基石。在这里,使用Heisenberg Antiferromagnet RBMNF 3,我们证明激光诱导的Thz旋转动力学对应于对应于相互一致的反向传播波的成对,波向量到Brillouin区域的边缘,无法用磁性和抗模型(antiferromagnotic)旋转(nneellomagnetial)dictive(nneellomagnetial)。相反,我们建议使用自旋相关函数对这种自旋动力学进行建模。我们得出了后者的量子力学运动方程,并强调与磁化和抗磁磁性不同不同,抗铁磁体中的自旋相关性不表现出惯性。
与超导体连接的抽象磁性材料披露了具有量子技术潜力很大的新型物理现象。将分子用作磁成分已经表现出巨大的承诺,但是分子领域提供的大量特性仍然在很大程度上没有探索。在这里,我们研究了在亚单层覆盖范围内沉积在超导铅表面上的单个分子磁铁(SMM)。这种组合揭示了超导体(SC)对SMM的自旋动力学的强烈影响。表明,向冷凝水状态的超导过渡将SMM从阻塞的磁化状态转换为谐振量子隧穿态度。此结果为通过SCS和使用SMM作为超导状态的局部探针提供了控制SMM磁性的观点。
“因此,据我们所知,它们是第一类以三阶响应为主要非线性响应的材料。此外,我们表明,由于这些材料中的自旋分裂较大,这种响应非常大。此外,交替磁体的弱自旋轨道耦合(与磁交换项相比)也出现在其非线性响应中,为这类新材料提供了一种新颖的传输特性,而这种特性以前仅限于寻找线性异常霍尔电导率。”
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。
具有定向双稳态磁矩的分子也称为单分子磁体 (SMM) [1–4],一直是人们深入研究的对象,旨在探索其在分子水平上存储信息的潜在用途。 [5–10] SMM 是顺磁性金属离子通过合适的配体结合在一起的单核或多核配位化合物,这些配体通常可在固体中相邻分子之间提供有效的屏蔽。 它们中的大多数都具有大自旋和易轴磁各向异性的组合,这导致低温下磁化波动急剧减慢并出现磁滞。 [2,11,12] 通常观察到磁滞的温度值仍然是技术应用的极限 [5–10] 但在 77 K 以上的工作温度(液氮的正常沸点)
1 卡尔斯鲁厄理工学院 (KIT) 物理研究所,德国卡尔斯鲁厄 2 卡尔斯鲁厄量子材料与技术研究所,德国卡尔斯鲁厄 3 韩国首尔基础科学研究所 (IBS) 量子纳米科学中心。 4 梨花女子大学,韩国首尔。 * 通讯作者:philip.willke@kit.edu,
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
Kitaev 蜂窝模型在量子自旋液体的探索中起着关键作用,其中分数准粒子将在无退相干拓扑量子计算中提供应用。关键因素是键依赖的 Ising 型相互作用,称为 Kitaev 相互作用,它需要自旋和轨道自由度之间的强纠缠。在这里,我们研究了显示稳健 Kitaev 相互作用的稀土材料的识别和设计。我们通过开发专为大规模计算而设计的并行计算程序,仔细研究了所有可能的 4 f 电子配置,这需要微扰过程中多达 600 多万个中间态。我们的分析表明,在所有 Kramers 二重态的实现中,各向同性的 Heisenberg J 和各向异性的 Kitaev K 相互作用之间都存在主要的相互作用。值得注意的是,具有 4 f 3 和 4 f 11 配置的实例展示了 K 相对于 J 的普遍性,这为探索化合物(包括 Nd 3 + 和 Er 3 +)中的 Kitaev 量子自旋液体带来了意想不到的前景。