(10 -5 ) 钴铁硼 10 50 5 6.67 14.60 175.01 55.64 77.63 3.68 钴铁硼 5 50 5 8.46 29.48 384.88 64.82 135.41 3.22 钴铁硼 5 50 10 4.56 17.88 108.74 75.02 27.16 1.31 钴铁硼 * 5 50 10 4.65 14.77 78.57 87.39 9.91 0.53 钴铁硼 5 100 10 8.95 15.40 197.38 69.82 59.57 1.43 镍铁 10 50 5 8.72 2.66 10.78 215.17 -12.42 -1.95 镍铁 2.5 50 5 9.15 35.98 148.76 221.25 -180.37 -3.91 镍铁 2.5 50 10 4.58 27.30 54.35 230.17 -70.75 -3.02
几何受挫 (GF) 磁体由局部磁矩、自旋组成,其方向无法同时最小化它们的相互作用能。此类材料可能承载新颖的物质相,例如称为量子自旋液体的类流体状态。与所有固态系统一样,GF 磁体具有随机分布的杂质,其磁矩可能在低温下“冻结”,使系统进入自旋玻璃态。我们分析了 GF 材料中自旋玻璃转变的现有数据,发现了一个令人惊讶的趋势:玻璃转变温度随杂质浓度的降低而升高,并在以前未确定的“隐藏”能量尺度上达到无杂质极限的有限值。我们提出了一种情景,其中相互作用和熵的相互作用导致介质磁导率的交叉,有助于玻璃在低温下冻结。这种低温的“发光”相可能会掩盖甚至破坏相当干净的系统中广泛寻找的自旋液体状态。
摘要:将永久微磁体单片集成到 MEMS 结构中可为磁性 MEMS 应用提供诸多优势。一种名为 PowderMEMS 的新技术已用于在 8 英寸晶圆上制造永久微磁体,该技术基于通过原子层沉积 (ALD) 聚集微米级粉末。在本文中,我们报告了由两种不同 NdFeB 粉末粒径制备的 PowderMEMS 微磁体的制造和磁性特性。在 75 ◦ C 的低 ALD 工艺温度下实现了 423 mT 的剩磁和 924 mT 的固有矫顽力,使该工艺与 MEMS 技术兼容。借助 Wohlfarth 方程讨论了微磁体中的磁可逆机制。为了确保这种集成微磁体在不同应用环境中的可操作性,我们进行了一系列实验,系统地研究了热稳定性和腐蚀稳定性。粉末颗粒尺寸较大(d50 = 25 µ m)的 NdFeB 微磁体在空气中表现出较高的热稳定性。此外,通过等离子体增强化学气相沉积 (PECVD) 沉积的额外氧化硅钝化层显著提高了微磁体的腐蚀稳定性。所给出的结果证明了 PowderMEMS 微磁体的耐用性,使其能够应用于微流体、传感器、执行器和微电子等各个领域。
摘要:我们从理论上研究了低频光脉冲与拓扑和磁有序两七重层 (2-SL) MnBi 2 Te 4 (MBT) 和 MnSb 2 Te 4 (MST) 中的声子共振的影响。这些材料具有相同的对称性和原始形式的反铁磁基态,但表现出不同的磁交换相互作用。在这两种材料中,剪切和呼吸拉曼声子都可以通过与光激发红外声子的非线性相互作用来激发,使用可以在当前实验装置中获得的强激光脉冲。光诱导的瞬态晶格畸变导致有效层间交换相互作用和磁序的符号发生变化,并伴有拓扑能带跃迁。此外,我们表明,通常存在于 MBT 和 MST 样品中的中度反位无序可以促进这种影响。因此,我们的工作确立了 2-SL MBT 和 MST 作为实现非平衡磁拓扑相变的候选平台。
其中,磁性 skyrmion 正被考虑用作信息载体,它是具有手性边界的纳米级自旋结构。[2] 自 2009 年首次在 MnSi 单晶中实验观察到 skyrmion 以来 [3],skyrmion 已在多种薄膜系统 [4–8] 以及其他单晶中被发现。[3,9–12] 在同一时期,随着石墨烯单层剥离的成功演示,二维层状材料家族引起了广泛关注。[13] 磁性范德华 (vdW) 晶体的加入为自旋电子学应用打开了大门。几种二维层状磁性材料块体晶体,包括 Cr 2 Ge 2 Te 6、[14] CrI 3、[15] 和 Fe 3 GeTe 2、[16],已被证明在厚度仅为一个或几个单层时就表现出磁性。前两种材料是绝缘的,而 Fe 3 GeTe 2(FGT)是金属的,因此提供了通过自旋流操纵自旋纹理的可能性。由于表现出强的垂直磁各向异性,并且可以通过改变其化学成分或离子门控来调整其居里温度(T c ),FGT 是一种非常适合自旋电子应用的材料。[16–19]
微生物拥有高度进化的生存策略,这些策略已被用于解决药物输送问题。在肿瘤学中,“细菌作为药物”的概念可以利用化学疗法的直接细胞毒活性,同时还可以发展强大的治疗性抗癌免疫力。例如,溶瘤病毒 (OV) 可以选择性地感染和复制癌细胞,导致直接肿瘤细胞溶解以及诱导免疫原性细胞死亡 (ICD) 和抗肿瘤免疫。因此,OV 是一种新兴的癌症治疗方式,定位于生物疗法和免疫疗法的交界处。使用病毒的 OV 的应用,例如单纯疱疹病毒 (HSV)、水泡性口炎病毒 (VSV)、腺病毒 (Ad) 和安进的 T-VEC [1],这是 FDA 批准的第一个用于临床治疗黑色素瘤的 OV,
(Ln) 基复合物应运而生,表现出高磁阻塞温度,通常还具有足够的氧化还原稳定性。[16–18] 然而,最近旨在研究电子通过单个 SMM 的磁性系统的实验表明,至少在基于 Ln 的双层 SMM 中,4f 电子通常难以接近,因为它们的空间局域化和能量位置远离费米能级。[19–25] 因此,通过电子传输直接寻址分子内部的 4f 磁矩需要系统具有可行能量的电子轨道和一定的空间延伸,就像早期的 Ln 物种一样 [25] 或电子态与 4f 轨道强烈杂化而不会改变磁性复合物特殊磁性的系统。 [26,27] 在这方面特别有趣的是功能化的内嵌二金属富勒烯,它在两个铁磁耦合的 Ln 原子之间引入了单电子键,是目前最有前途的 SMM 类型之一。 [28] 然而,尽管它们的碳笼完全吸收了表面沉积时的电荷重新分布,有利于其磁稳定性, [29] 但与此同时,它们的内嵌结构阻碍了直接进入分子内部,这在应用方面是不可避免的。 因此,到目前为止还没有报道过任何实验证明能够在传输测量中进入它们的磁芯。 在本文中,我们重点研究内嵌二金属富勒烯复合物 Ln 2 @C 80 (CH 2 Ph),以下称为 { Ln 2 }。 [30] 这些分子由一个大致呈球形的富勒烯笼组成,里面包裹着两个 Ln 3 +离子,见图 1 a。两种镧系离子共用一个单电子共价键,通过在 C 80 笼中添加 CH 2 Ph 侧基来稳定该键。这种金属-金属键导致 [Ln 3 + – e – Ln 3 + ] 系统中的 Ln 中心之间发生强交换,从而导致块体 [28] 和亚单层中均具有出色的磁性。[31,32] Liu 等人 [33] 已证明 Ln-Ln 键合分子轨道 (MO) 分裂成两个完全自旋极化且能量分离良好的组分,未占据组分位于笼基最低未占据 MO (LUMO) 下方并部分定位在 C 80 笼上,因此原则上可以在扫描隧道显微镜/光谱 (STM/STS) 中寻址。
我们展示了如何在准一维海森堡反铁磁体 KCuF 3 中直接见证量子纠缠。我们将三种纠缠见证——单纠缠、双纠缠和量子 Fisher 信息——应用于其非弹性中子谱,并与有限温度密度矩阵重正化群 (DMRG) 和经典蒙特卡罗方法模拟的谱进行比较。我们发现每个见证都提供对纠缠的直接访问。其中,量子 Fisher 信息在实验上是最稳健的,并表明至少在 50 K 以下存在至少二分纠缠,相当于自旋子区边界能量的约 10%。我们将量子 Fisher 信息应用于更高自旋 S 海森堡链,并从理论上表明随着量子数的增加,可见证的纠缠被抑制到更低的温度。最后,我们概述了如何将这些结果应用于更高维量子材料以见证和量化纠缠。
1 橡树岭国家实验室中子散射部门,美国田纳西州橡树岭 37831 2 橡树岭国家实验室纳米相材料科学中心,美国田纳西州橡树岭 37831 3 橡树岭国家实验室计算科学与工程部门,美国田纳西州橡树岭 37831 4 亥姆霍兹柏林材料与能源中心有限公司,Hahn-Meitner Platz 1, D-14109 Berlin, Germany 5 柏林工业大学物理研究所,Hardenbergstraße 36, D-10623 Berlin, Germany 6 橡树岭国家实验室量子科学中心,美国田纳西州橡树岭 37831 7 橡树岭国家实验室材料科学与技术部门,美国田纳西州橡树岭 37831 8 Shull Wollan 中心 - 中子科学联合研究所橡树岭国家实验室,美国田纳西州 37831