铁磁材料的固有磁性能可根据书面 IEC 60404 标准确定。当材料用作组件时,可能需要对这些固有特性进行退磁校正。这很难确定,因为它不仅取决于组件的几何形状,还取决于磁导率。对于永磁材料,可以测量磁偶极矩,该参数取决于材料特性和几何形状。这提供了重要的补充组件信息。本报告介绍了确定磁偶极矩的测量方法,并详细讨论了一种导致不确定度低至 0.1%(95% 置信限度)的方法。这种低水平的不确定度允许校准商用磁矩测量仪器。
在接下来的课程中,我们将开发一些技术来消除量子系统中不需要的变换。我们将这些不需要的变换称为“量子误差”。首先,考虑经典误差与量子误差的区别是很有用的。在经典硬件中,例如硬盘驱动器的盘片,铁磁材料中局部磁偶极矩的方向用于编码二进制位,即 0 或 1。磁偶极矩是由材料原子中的电子产生的,它们调整自旋方向,从而调整其固有磁偶极矩。由于费米-狄拉克统计产生的“交换能量”,这种调整在能量上是有利的。因此,如果外部磁场对单个电子的磁偶极矩施加的扭矩足以改变其相对于整体的方向,则电子将倾向于重新调整其磁偶极矩与整体。在量子硬件中,情况有所不同,实验者试图控制单个电子自旋态的叠加。在存在外部噪声的情况下,单个电子没有整体压力来保持其配置。此外,在经典情况下,材料电偶极矩的方向只能发生离散变化,例如从 0 到 1。在量子情况下,我们知道单个电子的自旋存在于自旋向上和自旋向下状态的叠加中,这由连续体描述。以孤立电子为例,其哈密顿量 H = ω σ z
摘要 我们建议在选定的系统中采用三种不同的时间微分扰动角相关测量来测试 MULTIPAC 装置。首先,将对 111 Cd (5/2+) 激发态磁偶极矩进行精确测量。我们还建议测量 Pd 中 Cd 的 Knight 位移随温度的变化,与早期实验相比,测量精度大大提高。最后,将进行第三个实验来测试 MULTIPAC 创新理念的可行性,即通过使用 111 In 和 111m Cd 两个探针测量多铁性系统 BiFeO 3。所需质子:目标上的 9 个质子位移(两年内至少分为 4 次运行)实验区域:GLM 区域、ISOLDE 大厅或离线实验室
在1968年具有同时负介电常数和同时发挥作用的材料中,光的阴性折射是在过去十年中引起了相当大的关注[2-7]。带有负折射指数的材料有望令人惊讶,甚至是反直觉的电磁和光学效应,例如多普勒偏移和塞伦科夫辐射的逆转[4] [4],evanescentent Wave的扩增[8] [8],亚波德的集中[8-10]等[8-10]等[11,1,1,1]。折射率材料,包括人工复合材料[13,14],光子晶体结构[15],传输线模拟[11]和手性介质[17-18]和光子谐振材料以及光子共振材料(相干原子蒸气)[19-21]。感兴趣的频率范围[1,4]。但是,典型的过渡磁偶极矩小于过渡电偶极矩,其限量的速度是纤维结构常数的一倍(α≈1
• 每轴总动量存储:+/-1.5 至 +/- 6.0 mN.ms 每轴一个反作用轮 • 最大扭矩:0.1 mN.m • 三轴磁力矩器配置,磁偶极矩高达 0.4 A.m² • 外部接口可连接 6 个或更多太阳传感器 • 即发即弃控制 • 标准 I 2C 兼容接口。RS422、RS485 和 UART 为选配 • 即插即用设计 • 主要组件通过了高达 45 krad 的辐射耐受测试 • 内置指向模式:目标指向、太阳指向、天底指向、快速旋转模式(使用磁力矩器时最大 200°)和防翻滚 • 质量轻:400g(带 RW210.15 反作用轮) • 功率低(标称值):1.4W • 外形尺寸:95 x 90 x 32mm
同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。
提出了一种游丝航天器的姿态控制策略,其中控制扭矩由与地球磁场相互作用的导电支撑结构产生。建立了该结构的数学模型,其中总扭矩由作用在每个载流结构元件上的洛伦兹力之和得出。结果表明,不同的几何配置允许在三个正交方向上产生有效磁偶极矩。利用该模型,给出了动态模拟结果,以评估导电结构使用经典 Bdot 控制定律在轨道上自行翻滚的能力。然后研究了使用该姿态控制系统操纵轨道反射器的可能性。在一个简化模型中推导出极地轨道上的大型太阳反射器持续照射地球表面固定点所需的角加速度,并与导电结构可实现的角加速度进行了比较。然后通过模拟来评估导电结构是否能够实现轨道反射器的部分姿态控制,例如在黎明和黄昏时分,当地面太阳能发电场的输出较低时照亮它们。
磁场会对载流环路产生扭矩。如果我们再添加 N 个环路,扭矩会更大,因此 τ = Nτ ′ = NiBA sin θ 其中 A = ab 是环的面积。扭矩会尝试使环的 ⃗n 与外部 ⃗ B 对齐,就像电偶极子一样,因此我们将它们称为磁偶极子。这种对齐也就像条形磁铁一样。我们可以用其磁偶极矩 ⃗µ 来描述任何电流环路。⃗µ 的方向与法向矢量 ⃗n 相同,其大小为 µ = NiA 。外部磁场中的磁偶极子会感受到一个扭矩,该扭矩使偶极矩与场对齐:τ = µB sin θ 与电偶极子一样,存在一个基于偶极矩和场之间角度的定义势能。 U (θ) = − ⃗µ · ⃗ B 与电偶极子一样,势能的变化意味着环的旋转能量增加或减少。当偶极子与外部场对齐时(它们“希望”与场对齐),它们的最低能量为 − µB。当它们与场反向平行时,它们的最高能量为 + µB。
摘要 风、阳光和水是可再生能源的例子。然而,它们的可靠性值得怀疑。在世界因气候变化对地球的影响(沙尘暴、森林火灾等)而发生变化的时代,人类希望依靠某种东西来保证他们的安全和温暖;我们希望依靠能源。不幸的是,很少有电源能够满足这种迫切需求或维持体内平衡而不会对周围环境产生负面影响。这种对更环保的能源的需求/呼吁正是 AeroGrav 的用武之地。AeroGrav 是一种线性重力存储装置,可以在可再生系统中存储能量,直到需要时为止。AeroGrav 让我们能够在不产生不利环境影响的情况下使用这些能源。总的来说,期望的结果是尽可能提高效率,从而利用最多的储存能量。我计划借助简单的科学来解决替代能源问题来实施这个项目。AeroGrav 需要电能,然后通过提升磁铁将其转化为重力势能。当磁铁被释放时,它会通过线圈下落产生电能。在这个实验中,我将通过调整终端速度、磁偶极矩、线圈电导率、导线内半径和极点厚度等受控变量来优化能量输出。观察它们的值让我能够看到它们如何影响电力输送。该系统将为家庭、办公室和建筑物提供能源。
自 20 世纪末首次在原子气体中实现玻色-爱因斯坦凝聚以来,超冷原子气体已成为研究各种量子现象的广泛采用的平台。近年来,人们越来越关注具有大磁偶极矩的物质,因为这些物质与更常见的碱金属相比表现出更强的长程相互作用。镝的磁矩约为 10 𝜇 𝐵 ,是磁性最强的原子物质,因此已成为研究长程(偶极-偶极)相互作用与接触相互作用竞争或占主导地位的系统的理想平台。在本文中,我描述了一种新型镝量子气体机的设计和优化。除了详细描述该装置的组件及其性能外,我还详细描述了用于提高磁光阱 (MOT) 负载率的“角度减速”技术的特性和优化。我还详细描述了使用该装置生产和检测第一个玻色-爱因斯坦凝聚体 (BEC) 的过程。本论文还详细描述了用于镝实验的新控制硬件和软件的开发,但可以(并且已经)用于其他量子气体实验。在硬件方面,我讨论了高性能模拟电压控制通道的设计,这些通道比市售的替代方案更具优势。在软件方面,我讨论了我设计的实验室控制和记录数据库系统,它既扩展了我们的控制软件的功能,又简化了实验室数据的存储和可访问性。