摘要。本文介绍了未爆炸弹药 (UXO) 在磁化过程中的物理模型和磁偶极子模型的公式推导。介绍了磁强计和电磁感应传感器在 UXO 检测中的应用。磁强计介绍了CS光泵海洋磁强计的全场测量技术和MagSTAR(Magnetic Scalar Triangulation and Ranging)梯度探测技术;电磁感应传感器介绍了Geophex公司和Geonics Ltd.的工作原理和目前流行的产品型号;美国海军研究实验室的MTADS(多传感器拖曳阵列探测系统)探测UXO的方法比较了与美国海军研究实验室目标识别方法的差异。
名称 地址 位宽 R/W 功能 INFO 0x0D/0x0E 16 R 信息(0x0101) WIA 0x0F 8 R 我是谁(0x41) DATAX 0x10/0x11 16 R X 输出值 DATAY 0x12/0x13 16 R Y 输出值 DATAZ 0x14/0x15 16 R Z 输出值 STA1 0x18 8 R 状态1(DRDY) CNTL1 0x1B 8 R/W 控制设置1 CNTL2 0x1C 8 R/W 控制设置2 CNTL3 0x1D 8 R/W 控制设置3 PRET 0x30 8 R/W 预设时间 AVE_A 0x40 8 R/W 平均时间设置 CNTL4 0x5C/0x5D 16 R/W 控制设置4(LV复位释放) TEMP 0x60/0x61 16 R 温度值 OFF_X 0x6C/0x6D 16 R/W 偏移 X 值 OFF_Y 0x72/0x73 16 R/W 偏移 Y 值 OFF_Z 0x78/0x79 16 R/W 偏移 Z 值 FINEOUTPUTX 0x90/0x91 16 R 根据 OFFX 的 DATAX 值 FINEOUTPUTY 0x92/0x93 16 R 根据 OFFY 的 DATAY 值 FINEOUTPUTZ 0x94/0x95 16 R 根据 OFFZ 的 DATAZ 值 SENSX 0x96/0x97 16 R 灵敏度调整 X 值 SENSY 0x98/0x99 16 R 灵敏度调整 Y 值 SENSZ 0x9A/0x9B 16 R 灵敏度调整 Z 值GAIN_PARA_X 0x9C/0x9D 16 R 轴干扰 X 值 GAIN_PARA_Y 0x9E/0x9F 16 R 轴干扰 Y 值 GAIN_PARA_Z 0xA0/0xA1 16 R 轴干扰 Z 值 OFFZEROX 0xF8/0xF9 16 R 无磁场时偏移调整 X 值 OFFZEROY 0xFA/0xFB 16 R 无磁场时偏移调整 Y 值 OFFZEROZ 0xFC/0xFD 16 R 无磁场时偏移调整 Z 值
无人机现在可用于执行机载地球物理勘测。绘制地球磁场的空间变化图,用于各种有用的应用。探索矿产潜力,以高分辨率绘制未爆炸弹药和考古图。• 无人机磁测和梯度勘测可以在过于危险、过于偏远或过于昂贵的地区进行,而这些地区无法使用载人飞机进行同等的地面或机载勘测。• 无人机磁测可以在地形和安全标准禁止载人飞机以最佳地形间隙获取数据的环境中提供高质量数据。
操作 G-859AP 采矿磁选机使用图形界面,可快速高效地进行勘测设计和数据采集。“简单”或“映射”模式使用线号和已知的放样参考点来定义地图参数。或者,用户可以使用集成的 Tallysman TW5310™ GPS 自动绘制位置图。位置信息可能来自外部 GPS、操作员输入的间距均匀的基准标记,或两者兼而有之。用户可随时切换到“剖面”模式,以堆叠剖面的形式观察最后 5 条数据线。数据收集在最多 5 个单独的勘测文件中,并通过高速 RS-232 数据链路(或带转换器的 USB)传输到计算机,以进行进一步分析和地图生成。提供功能齐全的图形数据编辑程序 MagMap2000,允许重新定位、重新对齐、GPS 平滑、数据过滤和数据插值。编辑后,数据将格式化为 Surfer for Windows 或 Geosoft 格式,以便进一步绘图和分析。速度和效率 G-859AP 数据采集提供连续(自动)或离散站点记录。由于仪器在连续模式下的采样率很高,因此数据质量始终很高,而且大多数项目的成本都较低。这使操作员能够快速勘测某个区域,在给定的时间段内覆盖的面积比其他磁力仪多 10 倍。
基于定制有源像素传感器 (APS) 的相机已设计、特性化并经过太空应用认证。该相机针对其在太阳磁力仪中的应用进行了优化,旨在用于太阳轨道器任务中的偏振和日震成像仪 (PHI)。设计的相机的控制电子设备在现场可编程门阵列 (FPGA) 中实现。对控制电子设备进行优化,可在高读出速度和温度梯度等可变操作条件下最大限度地降低相机噪声。此外,控制模块可保护图像传感器免受空间辐射引起的单粒子效应 (SEE) 的影响。图像传感器和相机的特性化结果揭示了它们的电气和光电性能。此外,三次辐射活动已经允许研究定制探测器对电离剂量、非电离剂量和单事件效应的耐受性。辐射,特别是非电离剂量,会显著增加传感器的暗电流,并对其他参数产生较小的影响。辐照后测试表明,如果保证适当的飞行退火和工作温度,这些影响可以部分克服,因此不会危及科学成果。对探测器实施的防 SEE 保护成功避免了相机的永久性功能故障。应用分析显示了相机特性及其与其他仪器单元的组合操作如何影响 PHI 磁力仪的偏振和计时性能。该分析既定义了相机的最低要求,又制定了联合操作偏振、光谱和成像模块的最佳策略。该仪器要求相机具有 2048 × 2048 像素的分辨率、快速读出和较大的满阱容量。反过来,任务的具有挑战性的轨道对所有机载子系统施加了恶劣的热和辐射环境。相机电子设备和 APS 传感器已经超越了这些得出的最低性能和操作条件。太阳轨道器是一项太空任务,将研究太阳、日光层以及它们之间的关系。该航天器将比以往任何太空任务更接近太阳。作为太阳轨道器有效载荷的一部分,PHI 磁力仪将测量太阳可见表面(即光球层)的磁场和气体流速。这项工作的大部分内容,包括需求研究、相机设计解决方案和图像传感器的辐射评估,都可以应用于未来的太阳观测站或直接用于其他太空科学相机。
第一种定位技术基于一个或多个磁力计测量磁性物体的感应磁场。这些测量取决于物体的位置和磁特征,可以用从电磁理论中得出的模型来描述。对于这项技术,已经分析了两种应用。第一个应用是交通监控,它对强大的定位系统有很高的需求。通过在车道附近部署一个或多个磁力计,可以检测和分类车辆。这些系统可用于安全目的,例如检测高速公路上的逆行驾驶员,以及通过监测交通流量用于统计目的。第二个应用是室内定位,其中移动磁力仪测量室内环境中磁结构引起的静止磁场。在这项工作中,提出并评估了此类磁环境的模型。
第一种定位技术基于一个或多个磁力仪测量磁性物体的感应磁场。这些测量取决于物体的位置和磁特征,可以用从电磁理论推导出的模型来描述。对于这项技术,已经分析了两种应用。第一个应用是交通监控,这需要很高的稳健定位系统。通过在车道附近部署一个或多个磁力仪,可以检测和分类车辆。这些系统可用于安全目的,例如检测高速公路上的逆行驾驶员,也可用于统计目的,通过监测交通流量。第二种应用是室内定位,其中移动磁力仪测量室内环境中磁结构感应的静止磁场。在本文中,提出并评估了此类磁环境的模型。
磁性ELD的精确度量是材料,地质,生物学,医学,安全,空间和物理科学中许多重要分析技术的核心。这些应用需要在广泛的规格范围内进行有关灵敏度,空间分辨率,带宽,可伸缩性和温度的操作。在这项工作中,我们开发了基于钻石中氮呈(NV)缺陷的磁力计的能力技术,该缺陷有望覆盖该参数空间的更大部分。我们研究了如何准备用于磁力测定法优化的钻石材料,并观察到了NV中心的基本光学和自旋特性。使用一种新的方案灵感来自于这些研究中收集的有关NV中心的新信息,我们构建了一个传感器,该传感器在许多领域的最先进方面进行了改进。最后,我们概述了改进这些传感器的计划,以研究目前使用现有技术无法访问的微观和纳米级磁现象。