简介。在过去的十年中,超导性的物理学一直在经历新的青年。对铁基超导体(IBSC)和Hy-Drides的发现和深入研究,这在很大程度上是促进的,而且还取决于对丘比特的基本和应用研究的进展。在这项工作中,我们报告了对差距结构,订单参数对称性和超流体密度行为的联合研究,并在互补技术的帮助下 - 对符号超导型非正式金属 - 正态正态正态金属 - 超导管(S-N-S-S-S)点(S-N-S)点接触和自我自我触发和自我自我firfird per-Prication Critister Perture Pristion。实验性distalis。测量细节。传输测量是在氦低温恒温器系统中进行的,温度控制器在±0之内稳定温度。01 K.使用定制的低噪声变量增益放大器测量电流 - 电压特性(IVC),然后是国家仪器采集系统。用量子设计MPMS XL-7 Squid磁力计对磁性交流敏感性测量进行了测量。综合和表征。在这项工作中,批量KCA 2 Fe 4 AS 4 F 2是从金属Ca,K,Fef 3粉末(作为碎片)中合成的,作为零件和预先合成的群体作为开始材料的起始材料6:3:3:3:3:2:2:10。XRD建立的单元格参数为a = 3。8612(2),C = 30。9367(13)°a r p = 6。 4%,与文献中给出的数据相吻合[1]。 通过RIR方法估计,1111和122杂质阶段的体积约为10%。9367(13)°a r p = 6。4%,与文献中给出的数据相吻合[1]。通过RIR方法估计,1111和122杂质阶段的体积约为10%。结果和讨论。有限的技术研究多晶样品中的超导能隙。这种方法之一是固有的多个Andreev Refrotions Spectroscopy
类别0核材料,设施和设备 - 核反应堆,燃气离心机,高强度金属,设备和材料,尤其是为核用途而设计的。类别1材料,化学物质,微生物和毒素 - 保护和检测设备,防弹衣,前体化学物质,毒素,壳体,泵,泵物体,叶轮和转子,病毒,细菌,保护性和检测设备,辐射设备,辐射屏蔽窗口和金属粉末生产设备。类别2材料处理 - 用于铣削的机床,计算机数值控制的机器和组件;反应容器或反应堆,搅拌器,储罐,容器,蒸馏或吸收柱,阀门,多壁管,多封或无密封的泵,十字架,机器人,机器人,振动测试系统,真空泵,化学处理,化学处理和处理设备。类别3电子 - 微波组件,声波设备,高能设备,开关设备,雷管,某些集成电路,光谱仪电子雷管,集成电路,微波电源模块和质谱仪。类别4计算机 - 高性能计算机,相关的电子组件以及其他专门设计的组件,辐射硬化计算机,神经和光学计算机以及相关设备。类别5电信和信息安全性 - 第1部分 - 电信。电信系统,光纤电缆,无线电设备,干扰设备以及遥测设备和遥控设备。第2部分 - 信息安全性(密码学)。加密设备和通信电缆系统。类别6传感器和激光器 - 海洋声学系统,言语,高速摄像头,光学镜和激光器,成像摄像机和磁力计。类别7导航和航空电子学 - 陀螺仪,加速度计,惯性导航系统,飞行控制系统,用于海洋学和水文测量的设备,加密的全球定位系统。第8类海军陆战队 - 潜水车,水下视觉系统,摄影静止相机,远程控制的操纵器,降噪系统和空气独立的电力系统。类别9航空航天和推进 - 航空和海洋燃气轮机发动机,液体火箭推进系统,无人驾驶飞机,混合火箭电动机,导弹,重新进入车辆,无人机,火箭电机,Ramjet Engines,Spacecraft,Spacecraft,Sounding Rockets,声学振动测试设备。
自从十五世纪初的哲学家和思想家一直想知道太空带来的奥秘,例如它们的性质和扩展,使他们对天体力学,应用数学和自然科学的相关领域做出了巨大贡献。随着技术和计算进步提供的科学进步,已经开发了新的空间应用技术,开始了空间探索的时代。由于电信,空间观察卫星的进展以及通过图像进行土地监测,世界航空航天部门开始发展,并激励建立与部门相关的身体。如巴西的例子,引用了目前被提名INPE的Gocnae(国家太空活动委员会组织)(国家空间研究所)[3]的概念[3]。这一事件偏爱大学,以方形山脉的形式进入太空竞赛,卫星的初始测量为10 x 10 x 10 cm,质量为1,33 kg,其特征是该利基市场的卫星测量。因此,立方体在学习和接触不同程度的教育的学生中表现出了重要的重要性,以便在航空航天部门进行研究。[2,7,8]。作为项目开发的开端,文献综述和对项目最初充足性的传感器进行研究。这项工作的目的是卫星大学建设和仪器的步骤,涵盖编程区域,添加剂制造[4,5],电子,嵌入式系统和天体力学[1,6]。加速度计和陀螺仪分别提供线性加速度和角速度,磁力计和气压计分别提供指导(指南针)和大气压(高度计),而GPS受体则提供位置和速度信息。每个传感器的数据将通过Cubesat MicroController处理,该数据将通过射频发送器传输处理的数据。这些传感器的主要特征是低成本,较小的物理尺寸和低功耗,这是将电池用作主要能源的应用的重要因素。因此,立方体将能够测量通过GY-280传感器获得的温度,压力和高度。另外,由于使用GPS,陀螺仪和加速度计系统,其沿轨迹的位置描述沿轨迹进行,定位和空间方向。然后,GY-521提供的数据和µT单元中的磁场测量值开始了系统的整合,因此您可以尝试进行步骤,以便更好地利用时间,并离散涉及的步骤,从而促进项目每个阶段可能误差。
量子技术正在从实验室前进到商业世界。但是,如果没有量子系统的精确控制,就无法建立从科学发现到革命技术的这一道路。量子最佳控制描述了一种技术系列,该科学家族通过系统地塑造应用于系统的控制场来改善量子操作。优化可以选择量子硬件的定制控制策略,以实现其全部潜力。在本论文中,我们将最佳控制应用于自旋系统,即钻石和戊季苯掺杂的萘的氮呈中心,以及被困的原子,特别是Rydberg Atoms和Ultracold原子冷凝物。genally,一个具有清晰目标的良好模型系统对应于通过开环优化接近定义明确的控制问题,即使用模型。但是,当未知的实验或环境因素具有很强的影响时,控制问题的复杂性就会增加。一旦任何可行的模型与现实,闭环分歧,即基于反馈,控制解决方案。从量子最佳控制方法的集合中,我们专注于穿着的切碎的随机基础算法与无梯度搜索相结合。此配对使我们能够应用带宽限制并限制优化参数的数量,从而简化了闭环应用程序。我们介绍了几种技术和修改,例如一种新的基础方法,可以使用“ RedCrab”软件包使用E FFI CIENT闭环控制。因此,我们在DI FF平台上为以下非常不同的目标进行了优化:灵敏度,超极化,数字挤压和纠缠状态准备。所有四个目标直接或间接改善感应方法。增强浅氮 - 视口中心的敏感性为改善基于钻石的扫描探针磁力计提供了机会。诸如萘晶体之类的材料的过度极化有望实现更精确的癌细胞成像。原子干涉法用于检测重力场的最小变化。我们探索的数字水平状态可以进一步提高该灵敏度。最后,较大的纠缠状态是超过经典灵敏度极限的关键。我们通过优化创建了一个破纪录的20量纠缠状态。最终,这些结果表明了量子最佳控制如何互连并增加平台量子技术的兴起。
基于单个固态旋转的量子传感器有望敏感性和空间分辨率1 - 20的独特组合。感应的关键挑战是在给定时间内并具有高动态范围内达到最小估计不确定性。自适应策略来实现最佳的表现,但是苛刻的实验要求阻碍了它们在固态系统中的实施。在这里,我们意识到自适应D.C.通过将钻石中电子自旋的单次读数与快速反馈相结合来感测。通过基于预先的结果实时调整自旋读数基础,我们在拉姆西互联网中表现出了超过标准测量极限的敏感性。此外,我们通过模拟和实验发现,自适应方案在考虑到开销和有限的估计时间时,与最知名的非自适应方案相比,具有独特的优势。使用优化的自适应协议,我们在1.78吨的范围内实现了6.1±1.7 nt Hz -1/2的磁场灵敏度。这些结果为固态传感器开辟了一类新的实验,其中利用了对测量历史的实时知识以获得最佳性能。量子传感器有可能通过利用对单个量子系统的控制来实现前所未有的灵敏度1,2。在一个突出的示例中,基于与钻石中氮的空位(NV)中心相关的单电子旋转的传感器资本资本利用了旋转的量子相干性以及由原子样电子波函数引起的高空间分解3,4。最近,它开创性实验已经证明了磁场5 - 7,电场8,温度9,10和菌株11的单旋传感。NV传感器有可能对生物学领域12-15,纳米技术16 - 18和材料科学产生革命性的影响。基于自旋的磁力计可以感觉到D.C.通过Zeeman偏移E Z =ħγB=ħ2πfB(其中γ是Gyromag-Netic Batio,而F B是Larmor频率)在两个自旋水平| 0>和| 1>之间。在拉姆西干涉测量实验中,由π/ 2脉冲制备的叠加态(1/2√)(| 0> + 1>)将在感应时间t上演变为(1/2√)(| 0> + e i i或)。可以通过在适当的基础上读取自旋,通过调整第二π /2脉冲的相位ϑ来测量φ=2πfb t。对于以恒定感应时间t重复的拉姆西实验,不确定性σf b随着总感应时间t的降低,为1 /(2πttt√)(标准的测量灵敏度,SMS)。然而,由于信号是周期性的,因此领域的范围也随t而下降,每当|2πfb t |时都会产生歧义。 >π。这导致动态范围为f b,max /σfb≤πt /t√。
[1] M.[2] H. Aoyama,K。Ishikawa,J。Seki,M。Okamura,S。Ishimura和Y. Satsumi,“矿山检测机器人系统的开发”,《国际高级机器人系统杂志》,第1卷。4,不。2,p。 25,2007。[在线]。可用:https://doi.org/10.5772/5693 [3] S. B. I Badia,U。Bernardet,A。Guanella,P.Pyk和P.4,不。2,p。 21,2007。[在线]。可用:https://doi.org/10.5772/5697 [4] ICBL-CMC,“地雷监视器2015”,禁止地雷的国际运动 - 加拿大集群弹药联盟,加拿大,2015年。[5] I. Makki,R。Younes,C。Francis,T。Bianchi和M. Zucchetti,“使用高光谱成像进行地雷检测的调查”,ISPRS摄影测量和遥感杂志,第1卷。124,pp。40 - 53,2017。[在线]。Available: http://www.sciencedirect.com/science/article/pii/S0924271616306451 [6] D. Guelle, M. Gaal, M. Bertovic, C. Mueller, M. Scharmach, and M. Pavlovic, “South-east europe interim report field trial croatia: Itep- project systematic test and evaluation of metal detectors - STEMD,”联邦材料研究与测试研究所(BAM),柏林,德国,2007年。[7] C. Castiblanco,J。Rodriguez,I。Mondrag´on,C。Parra和J. Colorado,用于爆炸性地雷检测的空中无人机,2014年1月1日,第1卷。253,pp。107–114。7,不。3,pp。813–819,2014。[8] X.[9] C. P. Gooneratne,S。C。Mukhopahyay和G. S. Gupta,“地雷检测的传感技术的审查:基于车辆的方法:无人车的方法”,pp。401–407,2004年12月。[10] P. Gao和L. M. Collins,“陆地矿山和小型未探索的陆地矿山的二维一般性似然比测试”,Signal Processing,第1卷。80,不。8,pp。1669 - 1686,2000。[在线]。可用:http://www.sciendirect.com/science/article/pii/s0165168400001006 [11]7,pp。107 259–107 269,2019。[12] J. Colorado,I。Mondragon,J。Rodriguez和C. Castiblanco,“地理映射和视觉缝制,以使用低成本无人机来支持地雷检测”,《国际早期机器人系统杂志》,第1卷。12,否。9,p。 125,2015。[在线]。可用:https://doi.org/10.5772/61236 [13] K. Kuru,D。Ansell,W。Khan,W。Khan和H. Yetgin,“分析和优化无人驾驶的物流群:智能交付平台:IEEE EEEE Access,第1卷。7,pp。15 804–31,2019。[14] K. Kuru,“使用新颖的框架计划智慧城市的未来,以完全自动的无人驾驶飞机进行,” IEEE Access,第1卷。9,pp。6571–6595,2021。[15] K. Kuru,D。Ansell,D。Jones,B。Watkinson,J。M. Pinder,J。A. Hill,E。Muzzall,C。Tinker-Mill,K。Stevens和A. Gardner,“使用自动驾驶无人驾驶航空车对牲畜进行智能的空降监测”,在第11届欧洲精密牲畜耕种会议上,2024年。[16] K. Kuru和H. Yetgin,“新工业革命中先进的机电一体化系统的转变:一切自动化(AOE)的新颖框架”,IEEE Access,第1卷。7,pp。41 395–41 415,2019。[17] K. Kuru,“地理分布的智能管理:在锻造云平台(FCP)上作为服务(DINSAA)的深入见解”,《平行与分布式计算》,第1卷。149,pp。103–118,3月2021。[18] L.-S. Yoo,J.-H。 Lee,Y.-K。 Lee,S.-K。 Jung和Y. Choi,“无人机磁力机系统在非军事区的军事矿山检测中的应用”,《传感器》,第1卷。21,否。9,2021。[在线]。可用:https://www.mdpi.com/1424-8220/21/9/3175 [19] L.-S. Yoo,J.-H。 Lee,S.-H。 KO,S.-K。 Jung,S.-H。李和Y.-K。 Lee,“装有磁力计的无人机检测地雷”,IEEE地球科学和遥感信件,第1卷。17,否。12,pp。2035–2039,2020。[20] Jirigalatu,V。Krishna,E。LimaSim〜oes Da Silva和A. Dossing,“使用混合无人驾驶飞机(UAV)(无人机)的可移植机载磁力测定系统的磁干扰实验”,《地球仪器仪器,方法,方法和数据系统》,第1卷。10,否。1,pp。25–34,2021。[在线]。10,否。1,pp。可用:https://gi.copernicus.org/articles/10/10/25/2021/ [21] L. E. Tuck,C。Samson,C。Lalibert´e和M. Cunningham,“磁干扰图映射四种无人飞机系统的无人飞机系统,用于空气磁性测量,地理位置仪器,”地理学仪器系统,”系统,数据,方法,方法,方法,方法,方法,方法,方法,方法,方法。101–112,2021。[在线]。可用:https://gi.copernicus.org/articles/10/10/101/2021/ [22] O. Maidanyk,Y。Meleshko和S. Shymko,“研究四倍体工位设计的影响及其在地面对象监控过程中的Quadrocopter Design及其对质量的质量的影响,“先进信息系统”,“先进信息系统”,第1卷。5,不。4,p。 64–69,2021年12月。[在线]。可用:http://dx.doi.org/10.20998/2522-9052.2021.4.4.4.10 [23] K. Kuru,“使用磁力计集成无人机和智能应用程序的地雷场磁场映射”,2024年。[在线]。可用:https://dx.doi.org/10.21227/ebny-b828 [24] K. Kuru,“元社会:使用智能城市数字双胞胎迈向沉浸式城市元网络,”,IEEE Access,第1卷。11,pp。43 844–68,2023。[25] K. Kuru和D. Ansell,“ Tcitysmartf:将城市转变为智能城市的全面系统框架”,IEEE Access,第1卷。8,pp。18 615–18 644,2020。[26] K. Kuru,D。Ansell,B。Jon Watkinson,D。Jones,A。Sujit,J。M. Pinder和C. L. Tinker-Mill,“智能自动化,快速,快速安全的地雷和未爆炸的军械法官(UXO)检测(UXO)检测,使用多个传感器进行衡量的仪器,在自动驾驶员上进行量子,iNemos and triment and trimose and imanee everrone and iever> ieee eyee eyee eyee eyee everient 9,pp。 923–948,2021。 transp。 Syst。,卷。9,pp。923–948,2021。transp。Syst。,卷。[27] K. Kuru和W. Khan,“一个与智能城市的完全自动地面车辆协同整合的框架”,IEEE Access,第1卷。[28] K. Kuru,“在城市环境中具有完全自动的自动驾驶汽车的人类触觉触觉近距离的概念化”,IEEE Open J. Intell。2,pp。448–69,2021。[29] K. Kuru,“自动驾驶和车辆决策的传感器和传感器融合”,2023年。[30] K. Kuru,“ Trustfsdv:建立和维持对自动驾驶汽车的信任的框架”,IEEE Access,第1卷。10,pp。82 814–82 833,2022。[31] K. Kuru,“对城市环境中自动驾驶汽车的多目标深钢筋学习奖励功能的定义”,IEEE Trans。车辆。Technol。,卷。11,pp。1-12,3月2024。
