弯曲振动自由度的研究得益于其二维特性和两个明确的物理极限——线性和弯曲配置——以及中间配置——准线性物种,其特点是大振幅运动,使其具有丰富的光谱特征[1]。正或非单调的非谐性,后者与非刚性分子的 Birge-Sponer 图中 Dixon 凹陷的出现有关[2],以及由于跨越线性壁垒附近的状态波函数中线性和弯曲特征的混合而导致的异常旋转光谱[3,4],是准线性物种光谱中最显著的光谱特征。光谱方法的重大进步和发展使得人们能够通过实验获得多种分子物种的高弯曲泛音。通过这种方式,我们有可能获得实验光谱信息,从而研究能量接近线性势垒的系统 [5,6]。水 [7] 和 NCNCS [8–10] 的研究结果具有特别重要的意义。近年来,量子单值化概念最初由 Cushman 和 Duistermaat [11] 提出,后由 Child [12] 重新研究,对系统中的状态分配有很大帮助。由于状态与线性势垒的接近性,波函数的复杂性妨碍了正确的状态标记 [5–8,13]。这是从经典力学中借用的概念,它依赖于拓扑奇点,当系统能量大到足以探测局部鞍点或最大值时,就会发生拓扑奇点,从而阻止定义全局作用角变量 [14]。非刚性分子弯曲振动的理论建模需要特殊的工具,因为大振幅振动自由度会强烈耦合振动和转动自由度。Hougen-Bunker-Johns 弯曲哈密顿量 [15] 是该领域的一项开创性工作。这项工作后来扩展到半刚性弯曲哈密顿量 [16] 和一般半刚性弯曲哈密顿量 [17]。基于上述发展而产生的 MORBID 模型 [18] 目前是分析非刚性分子光谱的标准方法,其中需要同时考虑转动和振动自由度,以便建模实验项值并分配量子标签。代数方法,尤其是振动子模型,是分子光谱建模的传统积分微分方法的替代方法。该模型基于对称性考虑,并严重依赖于李代数的性质[ 19 ]。振子模型 (VM) 属于一类模型,该类模型将 U(n+1) 代数指定为 n 维问题的动力学或谱生成代数 [20]。类似的模型已成功应用于强子结构 [21,22] 和原子核 [23–25] 的建模。在 Iachello 引入的原始振子模型形式中,双原子分子种类的回旋振动激发被视为集体玻色子激发 [26],由于相关自由度的矢量性质,动力学代数为 U(3+1)=U(4) [25,27]。弯曲振动的二维性质以及简化振子模型形式以有效处理多原子系统的需要,自然而然地导致了二维极限振子模型(2DVM)的制定[28,29]。2DVM 定义的形式能够模拟弯曲自由度的线性和弯曲极限情况,以及表征中间情况的大振幅模式[30-33]。本研究中使用的代数哈密顿量的四体算符的扩展已于最近发表[34]。2DVM 还用于耦合弯曲器[28,35-37]、拉伸弯曲相互作用[38-41]和异构化反应中的过渡态[42]的建模。
背景。以剪切流为特征的磁化等离子体存在于许多自然环境中,例如地球磁层顶和太阳风。所涉及等离子体的无碰撞性质需要动力学描述。当剪切层的宽度为离子尺度数量级时,可以采用混合 Vlasov-Maxwell 方法。目的。这项工作的目的是在混合 Vlasov-Maxwell 描述中推导出具有平面剪切流的磁化等离子体稳态配置的显式形式。考虑两种配置:第一种是相对于体积速度倾斜的均匀磁场,第二种是均匀幅度可变方向的磁场。方法。我们通过结合单粒子运动常数获得了稳态离子分布函数,这是通过研究粒子动力学得出的。考虑背景电磁场的局部近似,通过分析推导出关于分布函数形式的初步信息。然后建立了数值方法来获得一般分布的解。结果。我们确定了显式分布函数,使我们能够获得密度、体积速度、温度和热通量的分布。还评估了分布函数中的各向异性和无磁性。在均匀斜磁场情况下检查了数值模拟过程中解的平稳性。结论。这里考虑的配置可以用作开尔文-亥姆霍兹不稳定性模拟中地球磁层顶的模型。
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,请引用TSPACE版本,此外已发布
人体研究中的 ROI 分析 两位获得委员会认证的神经放射科医生(SO 和 YF,拥有 20 年经验)一致将 ROI 放置在 QSM 图像的中心切片上的以下每个区域中:GP、壳核、尾状核、黑质、红核、齿状核和脉络丛的低信号强度区域。然后使用开源软件(ImageJ,版本 1.50;美国国立卫生研究院,马里兰州贝塞斯达)将 ROI 的位置应用于来自同一患者或志愿者的 CT 图像。我们还根据 CT 和 MRI 扫描(包括 QSM、T1 加权、T2 加权和 T2* 加权图像)和临床信息在出血和钙化病变上放置了 ROI。当抗磁性病变被顺磁性区域包围时,优先选择内侧抗磁性(钙化)部分放置ROI。对于每个有病变的患者,最多选择3个病变放置ROI。计算每个ROI的平均CT衰减值和平均QSM值(磁化率)。当平均QSM值为正值(顺磁性ROI)时,还计算最大和第95百分位CT衰减值以及最大和第95百分位QSM值,以更好地理解CT衰减值和磁化率的特征,这在表观扩散系数的分析中通常采用(18)。对于平均QSM值为负值的ROI(抗磁性ROI),计算最大和第95百分位CT衰减值以及最小和第5百分位QSM值。通过以下对 CT 衰减值与磁化率之间的相关性进行评估:顺磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最大 QSM 值、第 95 百分位 CT 衰减值与第 95 百分位 QSM 值;抗磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最小 QSM 值、第 95 百分位 CT 衰减值与第 5 百分位 QSM 值。
本综述介绍了采用铁磁共振电动力学理论测量铁磁线宽、磁导率张量和饱和磁化强度的最新进展。结果表明,与常用的微扰和静磁理论相比,电动力学理论可以显著提高这些参数的测量精度。与微扰法相反,电动力学理论并不局限于小样本。它允许在适当选择的金属外壳中确定任意尺寸的球形和圆柱形旋磁样品的共振频率和 Q 因子。用电动力学理论对非常小的样本得到的结果与用微扰和静磁理论得到的结果相同。给出了微波频率下铁磁线宽、磁导率张量和饱和磁化强度的测量结果。
中央核 (CM) 是丘脑板内核,被认为是深部脑刺激 (DBS) 和消融手术治疗多种神经和精神疾病的潜在有效靶点。然而,CM 的结构在标准 T1 和 T2 加权 (T1w 和 T2w) 磁共振图像上是不可见的,这妨碍了它作为临床应用的直接 DBS 靶点。本研究的目的是展示如何使用定量磁化率映射 (QSM) 技术对丘脑区域内的 CM 进行成像。本研究纳入了 12 名患有帕金森病、肌张力障碍或精神分裂症的患者。在 3-T MR 扫描仪上获取 3D 多回波梯度回忆回波 (GRE) 序列以及 T1w 和 T2w 图像。QSM 图像是根据 GRE 相位数据重建的。在 T1w、T2w 和 QSM 图像上对 CM 进行了直接目视检查。此外,使用单因素方差分析 (ANOVA) 检验比较了 T1w、T2w 和 QSM 图像上 CM 与丘脑相邻后部的对比噪声比 (CNR)。QSM 显著改善了 CM 核的可视化。在 QSM 上可以观察到与周围环境相比 CM 的清晰轮廓,但在 T1w 和 T2w 图像上则未观察到。统计分析表明,QSM 上的 CNR 明显高于 T1w 和 T2w 图像上的 CNR。总之,我们的结果表明 QSM 是一种有前途的技术,可改善 CM 的可视化,作为 DBS 手术的直接靶向。
HPH 使用大振幅哨声器(即低于电子回旋频率的电磁波)产生能量为几十 eV(10-30 km/s,取决于推进剂选择)的等离子流。哨声器由固态开关电路以几十 kW 的功率驱动。直流线圈磁铁有助于哨声器的产生,额外的磁铁可使等离子体聚焦。
磁化目标聚变 (MTF) 是一种结合了惯性和磁约束聚变方法特点并充分利用了这两个领域的研究成果的推进技术 (Thio, 1999)。MTF 技术有望实现高比冲和低干质量;因此,它非常适合高速度外太阳系旅行的需求,包括载人探索任务。本文报告的工作是作为人类外行星探索 (HOPE) 研究的一部分开展的,该研究是革命性航空航天概念 (RASC) 计划的一部分。HOPE 的目标是设计一种能够对木星卫星卡利斯托进行载人探索任务的飞行器。本文报告的 MTF 推进系统设计是为了满足此次任务的要求而开发的。任务和飞行器的详细信息将单独报告 (Adam, 2003)。
光学显微镜显示蚀刻后表面清晰无特征。总之,我们描述了一种制造可靠、易于去除的高能高剂量离子注入掩模的新工艺。要注入的样品以额外的 AIGaAs 金属剥离层作为表面层,在其上通过常规光刻胶剥离技术对金属掩模进行图案化。注入后,通过使用 HCl 选择性蚀刻 AIGaAs 来去除 AIGaAs 金属剥离层和金属掩模。由于 HCl 的选择性,在去除金属掩模期间底层外延结构不会受损。这项工作得到了国家科学基金会化合物半导体微电子工程研究中心 (CDR-85-22666)、材料研究实验室 (DMR-86-12860) 和海军研究实验室 (NOOO14-88-K-2oo5) 的支持。