2.1 I型超导体的磁性特性让我们考虑超导体的磁化曲线。假设样品是纵向外部磁场H 0中的长圆柱体。随着场h 0的增加,首先,样品内部的诱导不会改变,并且保持b = 0。H 0到达临界场H C后,超导性被破坏,场将渗透到超导体中,B = H 0因此,磁化曲线b = b(h 0)出现如图2.1 a)。磁感应B和磁场强度H 0与表达式B = H 0+4πm相互关联,[SI单位:B/ µ 0 = H 0 + M](2.1),其中m是单位体积的磁矩。磁化曲线通常被绘制为-4πm对H 0,如图2.1 b)。现在,我们将得出从方程式(1.3):ρ= 0,b = 0的I型超导体的基本磁性特性。
磁性 skyrmion 是未来大数据密度存储设备的有希望的候选者。人们已经发现,在室温条件下,有各种各样的材料可以承载 skyrmion。通常在透射电子显微镜 (TEM) 中进行的洛伦兹显微镜是表征真实空间中 skyrmion 样本的最重要工具之一。通过数值计算,这项工作将 TEM 中的相位对比度与孤立 N'eel 或 Bloch skyrmion(两种最常见的 skyrmion 类型)的实际磁化曲线联系起来。在所使用的 skyrmion 模型框架内,对于纯磁性样品,结果与 skyrmion 尺寸和壁宽以及样品厚度的比例无关。提供了简单的规则来提取纯 Bloch 或 N'eel skyrmion 的实际 skyrmion 配置,而无需模拟。此外,还介绍了符合实验预期的 N'eel skyrmion 上的首次微分相位对比度 (DPC) 测量,并展示了所描述的原理。这项工作与材料科学相关,它可以通过便捷的表征来实现 skyrmion 轮廓的设计。