美国宇航局刘易斯研究中心的主要职责是研究和开发飞机和航天器的推进和动力系统。该职责比美国宇航局成立早很多年,实际上可以追溯到 1941 年,当时兰利实验室的一个小组搬到克利夫兰,建立了国家航空咨询委员会的航空发动机研究实验室,这是美国宇航局的前身。有了这样的历史背景,我们从应用的角度看待我们的大部分研究,以应用于新的或改进的推进和动力概念和系统,也就不足为奇了。正是这种观点导致了我们在本次会议上讨论的大部分研究和技术。这项研究针对的一些推进和动力概念距离应用还很遥远,有些可能被证明是不可行的。但是,除非对这些概念进行一些研究,否则我们无法发现这些概念的真正问题和局限性。确定推进概念的可行性确实是刘易斯的主要职责。在 20 世纪 40 年代和 50 年代初期,该中心的大部分活动涉及航空发动机,主要是涡轮喷气发动机及其相关部件。研究了它们在所有速度范围内的任务。这些系统、部件和任务研究的结果定期以会议的形式提交给航空工业、相关大学和军队。在过去的十年中,此类会议断断续续地持续着。这次会议是新系列会议之一,将以浓缩和总结的形式介绍我们在刘易斯活动几个领域的观点和研究成果。在 NACA 时期,刘易斯正在研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。随着 1947 年中期对导弹的重视程度不断提高,刘易斯中心开始研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t
欢迎消息亲爱的同事,我们很高兴在第13届高磁场研究会议之际欢迎大家参加Nijmegen。RHMF 2024是上周在博洛尼亚举行的国际磁性2024年国际磁性会议的卫星会议,是在圣达菲(2018)会议(2018年)的漫长传统的一部分,Grenoble(2015),Grenoble(2015),Wuhan(2012),Wuhan(2012); Nijmegen(1994),阿姆斯特丹(1991),Leuven(1988)和大阪(1982)。不幸的是,由于Covid 19大流行,2021年版的RHMF会议必须被取消,因此,这就是为什么我们在上一届六年后在Nijmegen见到大家特别高兴的原因。多年来,RHMF演变为公认的国际活动,致力于使用高磁场以及必要的磁铁技术和科学仪器的研究进展。在今年的版本中,我们期待着45次口头演示和47个海报演示文稿,这将详细概述这些领域的最新进展。我们有信心您会发现它们正在刺激,我们希望新的想法和合作能够从他们那里兴起,并且您将享受在Nijmegen的住宿。代表RHMF 2024组织团队,Peter Christianen主席RHMF2024
过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
实际上手性分子充当了轨道角动量滤波器。[10,11] 通过改变基底,进行了多项实验来探测基底 SOC 的作用。[12] 但所得结果不足以确定 SOC 的作用,因为基底可能有其他影响,如费米能级相对于最高占据分子轨道和最低未占据分子轨道之间间隙的位置,以及极化率,这些可以决定界面处的电导率和势垒,从而影响观察到的自旋极化。在自旋电子学中,自旋从铁磁基底注入,人们研究了自旋极化对铁磁体磁化和用于驱动电流的电场之间的角度 𝜃 的依赖关系。角度依赖性源于磁阻的各向异性。 [ 13 ] 通常,研究发现自旋极化取决于 cos2𝜃。[ 14,15 ]
H. Navarro 1*, Ali C. Basaran 1, F. Ajejas 1, L. Fratino 2.3, S. Bag 2, TD Wang 1, E. Qiu 1, V. Rouco 4, I.
本文讨论了超导绕组储能的可能性。介绍了超导磁能存储技术的里程碑,并描述了世界上设计的装置的发展历程。本文介绍了高温超导绕组的可能配置,特别强调了螺线管和环形配置以及装置的工作原理。作为该装置的示例,讨论了在13 K时能量为34 kJ的波兰超导磁能存储物理模型的设计和研究结果。讨论了利用螺线管和环形配置中绕组的几何参数控制能量值和磁场分布的可能性。对波兰超导磁能存储模型设计的研究表明,可以增加超导磁能存储绕组中存储的能量。通过选择适当的具有磁屏蔽的绕组配置,可以将装置外部的强磁场限制在标准允许的范围内。最后列出了超导磁储能在电网中的可能用途。
摘要:超导磁性分离器技术利用了强烈的磁场的力量来区分磁性和非磁性材料,证明包括采矿,回收和水处理在内的各个部门都必不可少。本研究旨在通过全面的建模和仿真来阐明不同磁收集介质对超导磁分离器内磁场分布的影响。采用Infolytica磁铁软件,我们模拟了JS-6-102 Pilot尺寸超导磁分离器中的磁场分布,评估没有磁介质的条件,并且具有不同的磁性矩阵,包括网格和杆类型。我们的模拟表明,磁矩阵的包含明显改变了磁场的分布,从而增强了磁感应强度和磁场均匀性的变化。具体来说,我们发现较小的网状尺寸会产生更均匀的磁场,而较大的杆直径会引起更大的磁场失真。这些见解是优化超导磁分离系统的设计和操作效率的关键。