磁传感器和测量 Dragana Popovic Renella、Sasa Spasic 和 Radivoje S Popovic,SENIS AG,瑞士,www.senis.ch,info@senis.ch 摘要 — 预计到 2022 年,全球磁传感器市场规模将达到约 40 亿美元。汽车行业的技术进步和对车辆安全的认识不断提高,以及对导航智能手机和其他可穿戴设备的需求不断增长,推动了这一市场的发展。本文概述了磁传感器技术,并比较了传感器在工业应用中的关键特性。展示了使用磁传感器的测量应用。最后,本文介绍了未来趋势并对磁传感器进行了展望。关键词 — 磁传感器、磁场测量
自从首次演示由长距离低损耗光纤实现的一类新型光学传感器以来,已经过去了 40 多年。这些传感器包括声学传感器、陀螺仪、分布式温度和应变传感以及各种光纤耦合换能器,这些传感器将光纤灵敏度扩展到其他应用,例如压力和磁场测量。1 仅仅十年之后,在 20 世纪 80 年代,首次提出了使用光纤布拉格光栅 (FBG) 作为光纤内应变和温度传感器的提案。2 在这些创新之后的几年里,第一代光纤技术实现了商业化,现在已遍布许多行业,包括航空航天、国防、安全、土木工程以及石油和天然气行业。如今,光纤传感器的全球市场规模达 10 亿美元。3
隧道磁电阻(TMR)传感器具有灵敏度高、易于小型化、功耗低等优点,有很大潜力成为高性能的磁场测量传感器。由于TMR磁传感器具有复杂的噪声特性,探究TMR磁传感器的噪声特性对指导其应用具有重要意义。本文研究了不同激励下TMR磁传感器的噪声特性。研究发现,交流激励下TMR磁传感器的噪声分离为:一部分噪声依赖于激励,与输出信号同步移至激励频率。剩余部分噪声与激励无关,停留在低频带。通过噪声数据的定量分析,我们发现与激励相关的噪声约占总噪声的70%,与激励无关的噪声约占30%。结果表明,在交流激励下,70%的噪声被同步调制,30%的噪声从信号中分离出来,为TMR磁传感器的应用提供了重要的指导。
Neel 研究所拥有 Jeol NEOARM,它在光谱学、电场和磁场测量方面提供了卓越的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱学以及原位/操作分析(催化、生长、液体介质、电池运行等)方面的活动。NEOARM 配备了冷 FEG,能够在 60 至 200 kV 的电压下运行,配备了 STEM 像差校正器、多个 STEM 探测器,包括一个用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
摘要。本文介绍了配备四个 PNI RM3100 磁强计的 CubeSat 磁强计板 (Quad-Mag) 的设计、特性和性能。RM3100 体积小、重量轻、功耗低且成本低,因此可以在单个板上集成四个传感器,通过使用多个传感器进行过采样,可以将单个传感器的本底噪声降低 2 倍。该仪器在实验中实现了 5.34 nT(单个轴)的本底噪声,四个磁强计的每个轴的平均本底噪声为 65 Hz,接近理论上为系统设定的 4.37 nT(40 Hz 下)的极限。单个板载德州仪器 MSP430 微控制器负责处理磁强计的同步,并通过简单的基于 UART 的命令接口与主机系统进行数据收集。 Quad-Mag 系统重量为 59.05 克,采样时总功耗为 23 mW,空闲时为 14 mW。在最佳条件下,Quad-Mag 可使用商用现成的太空应用传感器以 1 Hz 的频率实现近 1 nT 的磁场测量。
“电子显微镜视角下创新材料高级表征”初级教授职位 Institut Neel CNRS,法国格勒诺布尔 CNRS 预计将在 2024 年上半年开放一个初级教授职位,在 4 个最近获得最先进透射电子显微镜 (TEM) 的实验室之间的竞争中,包括 Institut Néel。因此,Institut Néel 正在寻找一位优秀且积极主动的候选人来加强对 TEM 高级表征的研究活动。Institut Neel 拥有一个 Jeol NEOARM,它在光谱、电场和磁场测量方面提供了特殊的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱方面的活动,同时也发展原位/原位分析(催化、生长、液体介质、电池运行等)。 NEOARM 配备了冷 FEG,可在 60 至 200 kV 的电压下运行,并配备了 STEM 像差校正器、多个 STEM 探测器(包括用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息照相的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
地磁场是地球的基本物理场,具有全天时、全天候、全区域等特点。因此地磁场具有丰富的参数信息。其中,地磁总场、地磁三分量、磁倾角、磁偏角、地磁梯度可用于磁导航[1]。地磁传感器具有体积小、成本低、精度高等优点。此外,地磁传感器还具有很强的抗冲击或过载能力。因此地磁传感器在商业和军事领域得到了广泛的应用。本文的目的是对地磁传感器进行校准和补偿,并最终通过校准后的地磁信息实现地磁导航[2]。现有的地面校准算法包括:1)椭球拟合法,该方法基于一个假设。即在磁传感器测量误差的影响下,磁场测量轨迹可以近似为一条椭圆轨迹。最小二乘椭球拟合法算法的本质是寻找一组椭圆参数,使得测量数据与拟合数据之间的距离在某种意义上最小化。该方法的优点是计算方便,但是对于三轴磁传感器的补偿效果有限[3]。2)磁变校准法,该方法试图计算旋转、拉伸和平移因子,将椭球轨迹校正为圆轨迹。然后利用该模型滤除异常信号。该方法同样易于实现,但补偿标定的精度也有限[4]。3)卡尔曼滤波法。卡尔曼滤波是一种常见的线性系统参数估计方法。可以采用扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)进行补偿。
摘要。精确的高精度磁场测量对许多应用来说都是一项重大挑战,包括研究空间等离子体的星座任务。仪器稳定性和正交性对于在不进行大量交叉校准的情况下对星座中不同卫星进行有意义的比较至关重要。这里我们描述了 Tesseract 的设计和特性 - 一种专为低噪声、高稳定性星座应用而设计的磁通门磁强计传感器。Tesseract 的设计利用了定制低噪声磁通门芯制造方面的最新发展。六个定制的赛道磁通门芯牢固而紧凑地安装在一个坚固的三轴对称基座内。 Tesseract 的反馈绕组配置为四方 Merritt 线圈,以在传感器内部创建一个大的均匀磁零点,其中磁通门磁芯保持在接近零的磁场中,而不管环境磁场如何,以提高磁芯磁化循环的可靠性。 Biot-Savart 模拟用于优化反馈 Merritt 线圈产生的磁场的均匀性,并通过实验验证其沿赛道磁芯轴线的均匀性在 0.42 % 以内。使用线圈系统内装满干冰的绝缘容器来测量传感器反馈绕组的热稳定性。发现反馈绕组的温度灵敏度在 13 到 17 ppm ◦ C − 1 之间。传感器的三个轴在 −45 至 20 ◦C 的温度范围内保持正交性,误差不超过 0.015 ◦。Tesseract 的核心在 1 Hz 时实现了 5 pT √ Hz −1 的磁本底噪声。Tesseract 将在 ACES-II 探空火箭上进行飞行演示,目前计划于 2022 年底发射,并将再次搭载在 TRACERS 卫星任务上,作为 MAGIC 技术演示的一部分,目前计划于 2023 年发射。