国家 / 制造商 美国 / IMS-AMCO 美国 / Equipto 美国 / EMPrimus 韩国 / ETRI 研究所
4.1.2.5.3 当无法拆除屏蔽外壳壁 SÚ1¿ 和 SÚ2¿ 时,应将两个杆 RÚ1¿ 和 RÚ2¿ 放置在外壳外部完全相同的位置,不得有任何障碍物。由于 RÚ1¿ 产生的强电场可以穿透探测器 D 和衰减器 A 的金属外壳,因此两个设备应留在外壳内,杆 RÚ2¿ 通过传输线连接器引出外壳。所用电缆应尽可能短。连接器应在穿过屏蔽外壳每个壁的地方沿圆周接地。测试期间,屏蔽外壳门应关闭。
开发的技术:光子学和低温电子学与磁屏蔽混合集成 (HIPCEMS) 技术为超导电子学的磁屏蔽提供了一种定制解决方案,同时允许光学互连以实现节能的信息传输。该技术提供了一种芯片级屏蔽和封装解决方案,可在低温下提供磁隔离。磁隔离对于基于单通量量子 (SFQ) 架构的信号处理 SCE 芯片至关重要,因为信息以磁通量量子的形式存储。HIPCEMS 技术为 SCE 设备的更密集集成提供了一种途径,同时仍提供所需的磁噪声抑制。
太阳和深空观测。Gateway 的地月轨道提供了在深空环境以及磁屏蔽环境中进行观测和测量的机会,具体取决于月球轨道的相位。Gateway 将使人类和生物科学目标的追求成为可能,从而更好地了解在火星深空任务的所有阶段保持机组人员健康和优化任务执行所需的条件。具体而言,空间站将通过应用科学目标和在多个领域的调查,包括微陨石通量、大气天气、空间天气和尘埃,实现地球独立运行。Gateway 的外部机器人接口、机械臂和科学气闸将允许有效载荷飞到空间站并安装在空间站上,以供未来调查。
最常见的钨andα-W同质量在约11 mk的温度下具有超导过渡。然而,据报道,当合成为薄膜时,温度范围内具有超导的过渡,在温度范围内t c〜2-5 k:晶体β-W和无定形W(A -W)。在这项工作中,我们对使用DC磁控溅射,运输,低频磁屏蔽响应和透射电子显微镜进行了系统研究。我们的结果表明,虽然A -W确实是常规的超导体,但β-W并不是一个超过2.3 K的超导体。在推定的β -W fif中,具有T c> 3 k的超导能力可能起源于在β-W相下形成的无定形相。我们的发现调和了β -W中报道的一些异常,例如非常小的超导间隙和随着纤维厚度的增加而减少T c。
摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。
a) 基础知识:物理基础、磁核、共振、弛豫过程、信号灵敏度。b) 仪器:连续波 (CW) 仪器、脉冲傅里叶变换 (FT) 仪器、功能、与灵敏度的关系、采样。c) 1 H NMR,结构与光谱的相关性:化学环境和屏蔽、化学位移及其概念的起源、参考化合物、局部抗磁屏蔽和磁各向异性、与化学位移的关系、化学和磁非等效性、自旋-自旋分裂及其起源、帕斯卡三角、耦合常数、耦合机制、积分、NMR 溶剂及其残余峰、杂原子上的质子、四极杆增宽和去耦、构象和立体化学对光谱的影响、卡普拉斯关系、非对映质子、与 F 和 P 的异核耦合、虚拟耦合、长距离耦合-epi、peri、bay 效应。位移试剂-作用机理、自旋解耦和双共振。一些化合物和药物的光谱说明。d) 13 C NMR 结构与光谱的相关性:化学环境、屏蔽和碳-13 化学位移、计算、质子耦合 C 光谱、质子解耦 C 光谱、核 Overhauser 增强 (NOE)、积分问题、极化转移无失真增强 (DEFT)、碳与氘、碳与 F、碳与 P 的异核耦合。一些化合物和药物的光谱说明。4. 质谱 (MS):分子离子和亚稳态峰、碎片
1.委托工作目的(1)研究课题的最终目标本研究的目的是实现一种具有高抗磁场能力和磁场灵敏度的高温超导SQUID磁传感器,主要针对磁场偏差型(梯度仪)传感器配置方法和制造技术进行基础研究。为此,在三年的工作中,我们对采用高性能约瑟夫森结技术的交叉布线和氧化物薄膜堆叠技术等制造技术进行了研究,这些技术是在波动磁场下稳定工作和高灵敏度的关键。首先,优化包括接合阻挡材料在内的制造条件。在这些优化的制造条件下,我们将制造和评估磁场偏差型传感器,并建立一种构建高平衡和高灵敏度磁场偏差型传感器的方法。此外,以实现高温超导SQUID磁传感器在密闭容器中长期稳定运行为目标,我们还将开展传感器冷却和安装方法的基础研究。我们主要研究了液氮和小型冰箱相结合的冷却方法,研究了最大限度减少外部热量流入的实施方法、冰箱的排气热处理方法和降噪方法,目的是获得有关冷却和安装方法的知识。使传感器长期稳定运行。 作为本研究最终目标的高温超导SQUID磁传感器的性能如下。 ・磁场调制电压宽度:平均 60 µV 以上(在磁屏蔽室中测量) ・磁场偏差型传感器的不平衡:1/10 4 以下(在磁屏蔽室中测量) ・磁场偏差灵敏度(@ 1 kHz):1 pT/(Hz) 1/2 m 或以上(传感器噪声在磁屏蔽室内测量,磁通-电压转换系数在磁屏蔽室外测量)关于冷却和安装技术,以下是最终目标。 ・将在常压室温环境和地球磁场中对内置于密封容器中的高温超导SQUID磁传感器进行连续运行测试,并确认三天或更长时间的稳定运行。 (2) 为了实现最终目标必须克服或澄清的基本问题 为了实现最终目标必须克服的基本问题如下。 ①耐高磁场高温超导SQUID磁传感器配置方法的建立①-1 SQUID基本性能的提高SQUID磁传感器是一种宽带矢量传感器,以超高灵敏度检测与检测线圈交联的磁场,与其他磁性传感器类似,它具有其他磁性传感器所没有的功能。当使用SQUID作为磁传感器时,形成包括磁通锁定环电路(以下称为“FLL电路”)的反馈环路以使输出线性化,并且如果磁场波动较大,则工作点被固定(锁定)。随着时间的推移,反馈将无法跟随它,并且工作点会波动(失锁),从而无法进行连续测量。因此,当使用SQUID磁传感器,特别是使用一个检测线圈的磁力计传感器(磁力计)时,在地磁准静止条件下,例如在没有较大姿态变化的海底,或者当在电磁场施加磁力时使用对于勘探或无损检测领域来说,对磁场波动的跟踪能力(能够保持锁定状态的磁场随时间变化的最大dB/dt,以下简称“间距”)非常重要。有必要提高成卷率。对于稍后将讨论的磁场偏差型传感器,这也是提高对磁场不平衡分量的时间波动和意外电磁噪声的抵抗力的重要问题。转换速率取决于FLL电路的带宽,但它与磁场调制电压宽度(V)成正比,这是SQUID的基本性能。另一方面,V是SQUID基本规则