本研究はJSPS 科研费(JP 21H05021, JP 17H06227)、JST CREST(JPMJCR18J1)、JST SICORP
量子电路的标准模型假设操作以固定的连续“因果”顺序应用。近年来,放宽这一限制以获得因果不确定计算的可能性引起了广泛关注。例如,量子开关使用量子系统来连贯地控制操作顺序。已经证明了几种临时的计算和信息理论优势,这引发了这样一个问题:是否可以在更统一的复杂性理论框架中获得优势。在本文中,我们通过研究一般高阶量子计算下布尔函数的查询复杂性来解决这个问题。为此,我们将查询复杂性的框架从量子电路推广到量子超图,以便在平等的基础上比较不同的模型。我们表明,最近引入的具有因果顺序量子控制的量子电路类无法降低查询复杂度,并且因果不确定超级映射产生的任何潜在优势都可以用多项式方法限制,就像量子电路的情况一样。尽管如此,我们发现,当利用因果不确定超级映射时,使用两个查询计算某些函数的最小误差严格较低。
免疫检查点抑制剂 (ICI) 自开发以来,改变了多种恶性肿瘤的治疗模式 [1]。它们不仅改善了临床结果,而且巩固了免疫调节作为癌症治疗基本策略的地位 [2]。在需要全身治疗的晚期肺癌治疗中,传统上以铂类化疗为主 [3]。然而,铂类化疗的疗效受到剂量限制性毒性的影响 [4,5]。虽然针对表皮生长因子受体 (EGFR) 和间变性淋巴瘤激酶 (ALK) 的小分子靶向药物已显示出比传统化疗更好的疗效和耐受性,但它们仅适用于具有特定基因变异的患者 [6-8]。另一方面,ICI 治疗可显著提高所有类型肺癌的疗效和耐受性 [9,10]。
摘要 - Cloud文件系统为组织提供可扩展可靠的文件存储解决方案。但是,云文件系统已成为对手的主要目标,传统设计没有能力保护组织免受由恶意云提供商,共同租户或最终客户发起的无数攻击。最近提出了利用加密技术和受信任的执行环境(TEE)的设计,但仍迫使组织进行不良的权衡,从而导致安全性,功能性或性能限制。在本文中,我们介绍了BFS,一个云文件系统,该系统利用TEE提供的安全功能来引导新的安全协议,以提供强大的安全保证,高性能和透明的POSIX样界面,向客户端。bfs提供更强大的安全保证和最多2。在最先进的安全文件系统上加速5倍。此外,与行业标准NFS相比,BFS最多可实现2个。2×跨微基准测试的加速度,对于大多数宏观基准工作负载,<1×开销<1×开销。bfs展示了一个整体云文件系统设计,该设计不会牺牲组织的安全性,但可以包含外包的所有功能和性能优势。
摘要:Van der Waals(VDW)材料中的原子级缺陷是量子技术和量子传感应用的必不可少的基础。除了有直接的磁相图外,分层的磁性半导体CRSBR是探索光学活性缺陷的出色候选者,包括最近假设的缺陷诱导的磁性磁性在低温下。在这里,我们在CRSBR中显示出是局部磁性环境的探针的光学活性缺陷。我们观察到CRSBR中频谱狭窄(1 MEV)的缺陷发射,与散装磁序和额外的低温,缺陷诱导的磁性阶均相关。我们在局部和非局部交换耦合效应的背景下阐明了该磁顺序的起源。我们的工作建立了诸如CRSBR之类的VDW磁铁,是一个与磁性晶格相关的缺陷的特殊平台。我们预计,受控的缺陷创造允许量身定制的复杂磁纹理和具有直接光学访问的相位。关键字:CRSBR,范德华磁铁,缺陷发射,缺陷磁性,磁相关,磁性半导体,传感S
交换相互作用与磁结晶各向异性之间的竞争可能会带来具有极大兴趣的新磁状态。可以进一步使用施加的静水压力来调整其平衡。在这项工作中,我们研究了沿易于轴施加的外部磁场中双轴an- tiferromagnet的磁化过程。我们发现,在静液压压力下,在这种材料中观察到的ISIN类型的单磁管转变为两个过渡,这是一阶自旋flop跃迁,然后是二阶阶层向极化铁磁状态的二阶转变,接近饱和。通过使用高静水压力改变层间距离,在低温下,在层次的Bulk CRSBR中获得了这种可逆的调节,该磁相可以有效地作用于层间磁力交换上,并通过磁光谱光谱探测。
近年来,热电效应引起了材料科学、固体物理和化学领域的广泛关注。实际上,固态热电转换为能量收集和冷却提供了一种有前途的解决方案[1]。此外,研究热电现象对于理解固体材料中准粒子的基本传输行为也很重要[2]。材料的热电效率用性能系数zT=S2T/ρκ来衡量,其中S、T、ρ和κ分别是热电势、绝对温度、电阻率和热导率。S2/ρ称为热电功率因数。虽然表达式很简单,但获得高zT是一项具有挑战性的任务,因为这些传输参数是相互关联的。作为一项艰巨的任务,我们需要计算材料的热电效率,以确定材料的热电效率。