这篇论文由 LSU Digital Commons 研究生院免费提供给您并开放访问。它已被 LSU Digital Commons 的授权管理员接受并纳入 LSU 历史论文和论文。有关更多信息,请联系 gradetd@lsu.edu 。
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计
本研究はJSPS 科研费(JP 21H05021, JP 17H06227)、JST CREST(JPMJCR18J1)、JST SICORP
第 4 季度峰值参与 我们继续专注于减少第 4 季度峰值,第 102 期包括三篇与此任务相关的文章。首先,由评估和标准化局四级准尉 Rocha 和 Silva 少校提交的一篇文章,介绍了如何正确使用应急响应方法并将其应用于机组;第二,关于机组选择和风险缓解的简短情景信息,针对经验较少的机长遇到意外风险增加和潜在的控制措施;第三,简要回顾了任务简报流程和任务简报官的重要性。此外,事故审查还考虑了与高作战节奏、低照度、机组协调和疲劳相关的因素。这些因素可能与第四季度的准备培训以及部署到训练中心和 OCONUS 有关。
无人机技术的发展正在迅速发展,在制造飞机时,需要对作用在飞机上的空气动力进行分析。气动力分析可以通过风洞和水洞进行。可以使用可视化进行测量,但该方法不提供直接的气动力值。因此不能直接进行空气动力分析。可以使用带有称重传感器的力测量系统来进行空气动力测量。气动力测量系统应用可以直接分析气动力,因为力读数值直接以图形形式显示。该测量仪器使用称重传感器作为传感器,然后使用微控制器处理来自称重传感器的数据并显示在计算机上。经测试,该测力仪可以根据被测载荷测量出曳力和升力,误差较小。此外,可以使用该力测量系统来确定力矩。因此该系统可以测量3个自由度的空气动力,该测力系统还可以显示测试对象所受到的空气动力的方向。关键词:无人机、称重传感器、微控制器、气动力