在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次
为了进一步提高 MAD-XR 在浅水中的有效性,作为一种选择,可以绘制给定作业区域中地质构造引起的自然磁场。然后,MAD-XR 软件使用这些映射数据来预测地质的磁性贡献并将其从测量中消除,从而有效地执行完整的环境变化检测以将异常与新出现的来源(例如潜艇)隔离开来。地磁测绘最好提前完成,但可以在以前未测绘的区域的作业期间完成。此功能目前正在开发中,将作为升级选项提供。
在地质研究中,人们采用多种方法来勘探自然资源。大面积研究时会使用飞机、直升机和无人机 ( 无人驾驶飞机 ) 。研究中采用重力、电磁和磁力方法。重力法可以测量地球重力的微小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的高灵敏度重力仪制造商之一 [2]。安装在 Cessna 404 飞机上的 GT-1A 重力仪如图 1 所示 [3]。自然资源矿床也是通过应用电磁法发现的。第一个电磁系统出现并开发于 20 世纪 20 年代的斯堪的纳维亚半岛、美国和加拿大。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大型线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(一次磁场),该磁场穿透地球各层(图 2)。随时间变化的磁场在土壤中产生涡流。关闭线圈中的电流后,只有涡流产生磁场(二次磁场)
免责声明:本文件并非由加拿大国防部下属机构加拿大国防研究与发展编辑部出版,但将被编入加拿大国防信息系统 (CANDIS),即国防科技文件的国家存储库。加拿大女王陛下(国防部)不作任何明示或暗示的陈述或保证,也不对本文件中包含的任何信息、产品、流程或材料的准确性、可靠性、完整性、时效性或实用性承担任何责任。本文件中的任何内容均不应解释为对其中检查的任何工具、技术或流程的特定用途的认可。依赖或使用本文件中包含的任何信息、产品、流程或材料的风险由使用或依赖本文件的人自行承担。对于因使用或依赖本文件所含信息、产品、流程或材料而产生的或与之相关的任何损害或损失,加拿大不承担任何责任。
我们提出了一种将航空磁力数据和卫星数据相结合的新方法,该方法应用了等效偶极子层和偶极子的球谐函数 (SH) 展开。该方法包括两个步骤:(1) 等效偶极子层的磁参数反演和 (2) 将磁参数转换为 SH 系数。使用这种方法,SH 分析可用于区域研究区域,例如,可以用卫星数据替换航空磁力数据的长波长范围。我们在澳大利亚磁异常图的第三版、第四版和第五版上测试了我们的方法,这些地图使用独立的航空磁力数据集进行了长波长校正。结果表明,在 SH 度 40 至 110 范围内(对应于半波长 180 至 500 公里),根据长距离控制线调整的磁异常图与 LCS-1 卫星模型具有良好的一致性,而澳大利亚磁异常图第三版在此光谱范围内对长波长的控制较差。我们的分析表明,即使是经过精心处理的第五版,如果用卫星数据替换长波长数据,也会受益匪浅。
KPLO 航天器将携带六个科学有效载荷,包括月球地形成像仪 (LUTI),用于绘制月球表面地图、寻找未来着陆点和确定月球表面的感兴趣位置;以及广角偏振相机 (PolCam),它将在三个光谱带对整个月球表面进行偏振成像测量。它将携带 KPLO 伽马射线光谱仪 (KGRS),用于绘制月球表面上和地下各种元素和辐射的分布图;KPLO 磁力仪 (KMAG),它将描述月球磁异常并研究月球地壳磁性的起源;以及抗干扰网络实验有效载荷 (DTN)。此外,KPLO 还将携带 NASA 有效载荷 Shadowcam,用于探索极地陨石坑中的永久阴影区域。
处理后,我们对调整后的数据进行插值,并绘制等高线图。等高线图由规则网格制作而成。它们由 125 m x125 m 大小的方形网格插值而成。这相当于航线间距的四分之一。由于采集的分辨率,在线路中发现的无误差小值为 125 米。较大的值表示等高线图中的间隙。要区分异常,必须减去区域背景的发现值。Lowrie (2007) 表示,磁异常源于具有不同磁性的岩石之间的磁化对比。然而,异常的形状不仅取决于源物体的形状和深度(如重力法),还取决于其相对于剖面和感应磁场的方向,而感应磁场本身的强度和方向会随着地理位置的变化而变化。根据 Khameis 和 Nigm (2010) 的说法,一个有用的
摘要 — 提出了一种基于分布式磁传感器磁异常检测的新型车辆定位与跟踪方法。首先,利用总磁场,本文提出了一种不受旋转振动影响的总场匹配 (TFM) 方法来执行目标定位。我们不直接反转非线性磁偶极子方程,而是使用 TFM 方法来找到次优目标位置,然后应用线性卡尔曼滤波器跟踪目标。因为目标动力学与定位方程之间是线性关系。通过模拟进行案例研究,得出估计轨迹 (d, ϕ) = (70.8 m, 44.9°),该轨迹与实际轨迹 (d, ϕ) = (70.5 m, 45°) 非常吻合。对于车辆跟踪,户外实验结果显示基于四种不同的传感器网络配置的估计精度较高。
在评论该公告时,Rimfire 的董事总经理 David Hutton 先生表示:“这是在 Murga 进行的第一次金刚石钻探,我们很高兴地报告,除了生成用于多元素分析和冶金测试工作的样本外,钻探还发现了潜在的辉石岩的存在——这是一种重要的超镁铁质岩石类型,已被广泛记录为整个 Fifield 地区的异常钪的来源。我们还证明磁数据成功地“绘制”了辉石岩的位置,这很重要,因为整个 Murga 地区仍有许多未经测试的磁异常。从金刚石钻探和 Rimfire 之前的空芯钻探中获得的信息将极大地帮助我们规划未来的钻探,因为我们正努力在 24/25 财年结束前将 Murga 勘探目标转化为矿产资源估算。”
* Max 提醒投资者,铁矿石的潜在数量和品位是概念性的,并进一步提醒称,目前勘探程度不足以确定矿产资源,Max 不确定进一步勘探是否会导致目标被划定为矿产资源。赤铁矿矿化吨位潜力估计基于原位高品位露头和解释和模拟的磁异常。用于估计的密度值为 2.8t/m³。赤铁矿样品品位范围为 55-61% Fe。从先前开采的工业材料斜坡的原位露头收集了 58 个通道样品进行化学分析。通道样品平均重 14 公斤。化学分析在 ALS 实验室进行。使用 XRF 分析确定金属氧化物。熔融盘由浆状样品和添加的硼酸盐基熔剂制成。Max 没有在分析流中插入标准或空白,而是依靠 ALS 的实验室 QA/QC。