标为 A 的问题很简单,标为 B 的问题难度更大,标为 C 的问题旨在让学生思考,标为 S 的问题则是概括性的。WebLearn 上的“化学家物理学”下有在线物理教程。1. 电流。漂移速度 1.1AA 横截面积为 A 的导线每单位体积包含 n 个传导电子。证明导线中的电流等于 i = nAve 其中 e 是电子上的电荷,v 是漂移速度。1.2A 早期的直流电表将 11% 的电流转移到电解池中,锌离子在电解池中被还原为锌。然后使用沉积的锌的质量来测量供给房屋的电荷。如果在一个月内沉积了 65.4 克锌,则供给了多少电荷?1.3AA 半径为 800 μ m 的银导线承载的电流为 15 mA。假设每个银原子释放一个传导电子,计算该导线中电子的漂移速度。银的摩尔体积为 10.27 cm 3 mol –1 。1.4A 碘化银是快速离子导体。在 420 K 以上,银离子变得可移动并导电,而碘离子保持固定。半径为 1.0 cm 的碘化银圆盘承载着 30 mA 的电流。计算银离子的漂移速度。碘化银的密度为 5683 kg m –3,相对分子质量为 234.773。1.5A 在横截面积为 1.00 cm 2 的电导池中,含有 1.00 mM 的 RbBr 溶液,流过的电流为 1.56 μ A。假设两个离子的漂移速度相等且方向相反,求它们。
复杂的磁力机械耦合,该耦合控制了磁性elastomers(MRES)的材料响应(MRES)需要计算工具来协助设计过程。计算模型通常基于有限元框架,这些元素框架通常简化并理想化磁性源和相关的磁性边界条件(BCS)。但是,这些简化可能会导致实际物质行为与建模的简化,即使在定性层面也是如此。在这项工作中,我们提供了一项有关磁性BCS影响的全面研究,并证明了在整个材料结构建模策略中考虑它们的重要性。为此,我们实施了一个磁性机械框架,以模拟由理想化的远场均匀磁性源,永久磁铁,线圈系统和带有两个铁杆的电磁体产生的磁场下的软磁和硬磁MR。根据所使用的磁设置,结果在计算的局部磁截图和磁场中揭示了显着的异质性。基于材料和结构贡献的详细讨论为将来的作品提供了强大,严格且必要的建模途径。
鉴于今天在成熟城市使用的80%的建筑物仍将在2050 8之前使用,因此思科的房地产战略的关键部分是加速其净零旅程,并利用关键的设计考虑因素和诸如LEED之类的结果。实际上,纽约和亚特兰大思科办公室都考虑到了LEED。Cisco等组织还知道,在吸引和保留下一代人才方面,ESG扮演着关键角色。有40%的千禧一代已经接受了另一个工作要约,因为该公司被认为是更环保的9,到2029年,千禧一代和Z世代将占世界劳动力10的72%,因此在做出可持续性决策时考虑此信息对于考虑而言特别重要。
2。带电的粒子穿过恒定速度(幅度和方向)的空间区域。如果外部磁场在该区域为零,您能否得出结论,该区域的外部电场也为零?解释。如果外部电场在该地区为零,您是否可以得出结论,该区域的外部磁场也为零?3。从太阳中的电子速度为1×10 7 m/s,进入赤道上方的地球磁场,磁场为4×10 -7 t。电子几乎移动到一个圆圈中,除了沿着地球磁场方向的小漂移将使电子朝北极。循环运动的半径是多少?得出您使用的方程式。4。质子的光束沿正X方向沿X轴移动,速度为12.4 km/s,通过平衡的交叉田地,以零偏转。
近90年来,人们认为进动和放松过程占据了磁化动力学。直到最近才认为,在短时间内,惯性驱动的磁化动力学应变得相关,从而导致磁化载体的额外营养。在这里,我们通过突然激发了具有超短光脉冲的薄ni 80 fe 20(Permalloy)膜,从而导致有效轨道作用于磁矩,将磁化强度的动力学分开,从而使磁力的动力学与它的角动力分开。我们通过时间分辨的磁光kerr效应在实验上研究了惯性方向的磁化动力学。我们发现,Kerr信号中的特征振荡范围为〜0.1 THz的范围为0.1 THz,其在pressional振荡上以GHz频率叠加。通过与原子自旋动力学模拟进行比较,我们证明了该观察结果不能用众所周知的Landau-Lifshitz-Gilbert运动方程来解释,但可以归因于惯性贡献,从而导致磁化载体围绕其角度动量的营养。因此,惯性磁化动力学的光学和非谐振激发可以触发和控制不同的磁过程,从通过活动器的消极作用到单个设备中的进动。这些发现将对对超快自旋动力学和磁化切换的理解具有深远的影响。
人类神经炎症过程的抽象无创测量可以实质性地帮助许多疾病(包括慢性疼痛)的诊断和治疗性发育。几个质子磁共振光谱(1 H-MRS)代谢物已与神经胶质活性(即,胆碱和肌醇)联系在一起,发现在慢性疼痛患者中正在改变,但是它们在神经炎性级联反应中的作用尚不众所周知。我们的多模式研究评估了43例患有纤维肌痛的患者的静止功能磁共振成像连通性和1 H-MRS代谢物浓度,这是一种先前证明的慢性集中式疼痛障碍,包括神经毒素性成分和16个健康对照。患者在前岛(AINS)(P 5 0.03)中表现出胆碱(但肌醇)的升高,胆碱水平更高,与疼痛干扰较差有关(r 5 0.41,p 5 0.01)。此外,AINS和pe骨之间的静息功能连通性降低与疼痛干扰(全脑分析,P校正,0.01)和升高的AINS胆碱(R 5 2 0.37,P 5 0.03)有关。实际上,AINS/pe骨连通性在统计上介导了AINS胆碱与疼痛干扰之间的联系(P,0.01),突出了神经炎症会影响临床疼痛功能障碍的途径。为了进一步阐明观察到的效应的分子底物,我们研究了假定的神经炎性1 H-MRS代谢物如何与非人类神经毒素炎症的非人类灵长类动物模型中的离体组织炎症标记有关。结果表明,皮质胆碱水平与神经胶质原纤维酸性蛋白(Spearman R 5 0.49,P 5 0.03)相关。胆碱是一种假定的神经炎症1 H-MRS评估的代谢物,纤维肌痛升高并与疼痛干扰有关,可能与这些患者的星形胶质细胞增多有关。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。