我们通过嵌入自旋链中的w态来提高量子多体系统中复杂性的表征。这样的状态显示了数量的非稳定性或“魔术”,以稳定剂rényi熵测量,它们随量子 /旋转的数量而生长。我们专注于哈密顿人接受广泛堕落的经典观点的系统。在这些点附近,克利福德电路可以将基态转换为w state,而在经典点所属的阶段的其余部分中,它均配以局部量子相关性。拓扑结构的量子旋转链宿主相具有所需的现象学,我们表明他们的基态稳定剂rényi熵是W态的总和,以及广泛的局部贡献。我们的工作表明,W-州 /沮丧的接地状态表现出非本地的复杂程度,可以作为量子资源收获,并且在GHz状态 /未填写的系统中没有对应物。
低重力液体的液体对航天器设计师和操作员面临一些技术挑战。包括产生重大态度干扰,车辆质量中心的不受控制的位移或气泡的产生等。磁场可用于诱导磁易感推进剂的重新定位并改善流体系统的可控性。尽管在1960年代初提出了提议,但这种方法仍未得到探索。本文提供了对使用太空推进剂的磁控制的前景和挑战的新见解。确定了关键的未解决理论和技术问题,突出了开发适当的分析工具和流体磁模拟框架的重要性。提出了与伸缩性,长期的热和辐射稳定性以及顺磁和铁磁推进剂的效率相关的新结果。磁性沉降力被证明可以增强液体的振动响应的稳定性并加快液体的振动响应,从而导致针对不同尺度和填充比的更可预测的推进剂管理系统。这些效果与铁像流体特别相关,其增强的磁性能使它们成为空间中主动晃动控制应用的出色候选者。
背景:用于分析疾病扩散的最常用的数学模型是易感暴露感染的回收(SEIR)模型。此外,SEIR模型的动力学取决于几个因素,例如参数值。目标:本研究旨在比较两种优化方法,即遗传算法(GA)和粒子群优化(PSO),以估算SEIR模型参数值,例如感染,过渡,恢复和死亡率。方法:将GA和PSO算法与SEIR模型的估计参数值进行了比较。适应性值是根据累积阳性covid-19病例的实际数据与从seir covid-19模型解决方案的案例数据之间的误差计算得出的。此外,使用四阶Runge-kutta算法(RK-4)计算了CoVID-19模型的数值解,而实际数据是从印度尼西亚雅加达省正Covid-19 Case的累积数据集获得的。然后使用两个数据集比较每个算法的成功,即数据集1,代表COVID-19的扩展的初始间隔和数据集2,该间隔代表一个间隔,其中COVID-19 Case Case较高增加。结果:估计四个参数,即由于疾病引起的感染率,过渡率,恢复率和死亡率。在数据集1中,当值= 0.5时,GA方法的最小误差(即8.9%)发生,而PSO的数值误差为7.5%。在数据集2中,GA方法的最小误差,即31.21%,当时发生在= 0.5时,而PSO的数值误差为3.46%。结论:基于数据集1和2的参数估计结果,PSO比GA具有更好的拟合结果。这表明PSO对所提供的数据集更健壮,并且可以更好地适应Covid-19-19的流行病的趋势。关键字:遗传算法,粒子群优化,SEIR模型,COVID-19,参数估计。文章历史记录:2024年2月12日,2024年5月17日第一个决定,2024年6月20日接受,在线获得2024年6月28日
近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。
特别有用,可将跳动和/或旋转驱动对模仿生物学微晶状体的微动体。开创性的例子是Dreyfus等人建造的游泳者。由一连串的杂志珠束缚在红细胞上。[25]在这里,游泳是以衍生方式诱导的精子,也就是说,通过击败支持弯曲波传播的柔性附属物。自从这一突破以来,已经制造了其他几种生物启发的磁性微晶状体,包括由定制的微型磁铁,软磁复合材料和众多体系结构制成的,其中磁性区域会使非磁性鞭毛/附属物依赖。[13,15,16,20,26–29]越来越多地,正在研究附属物对游泳性能的作用,这表明游泳速度随生物学和合成系统的长度,弹性和中风频率而变化。[15,26,28,30]此外,已经确定,生物微晶状体的集体相互作用非常依赖于耦合的鞭毛(附录)动力学和流动在亚氟lagellum长度尺度上产生的动力学。[30]这些相互作用在本质上被利用以促进性能:例如,小鼠精子形成长列火车以提高其速度。[7,10,30–33]然而,对合成系统的附属物设计的严格控制仍然是征税,当需要纳米级特征时,更是如此。通过Maier等人采用的DNA自我组装是DNA的一种特别有希望的方法。基于DNA瓷砖管束生成合成的鞭毛。[26]将这些束式水力组装成旋转的磁珠时,将水力组装成类似几微米的开瓶器样式确认,以类似于细菌的方式驱动翻译运动。尽管组装技术允许对合成鞭毛的扭曲和刚度进行精美的控制,但它们的长度受到寡聚和不受控制的影响。在这种交流中,我们以Maier等人的工作为基础。使用替代DNA自组装策略DNA折纸。此处,通过单链核苷酸的单链DNA环通过单链DNA低聚物的特定结合以构建定位的纳米级附件,以预先确定的方式折叠。[34–37]我们提出了一种调节附属物覆盖磁珠上均匀或用断裂的对称性的方法。通过时间依赖的磁场摇动这些构建体,我们发现虽然结构完全覆盖了DNA折纸,但在很大程度上表现出了
沥青路面是全球道路建设的一种常见类型。,它在舒适性,耐用性和防水性方面提供了出色的性能。沥青路面道路容易受到不同类型的路面疾病的影响,这会影响其使用寿命。此外,过度使用不可再生的材料和大规模的建筑废物会产生负面影响。但是,沥青路面的自我修复技术减少了频繁维护和维修裂缝的需求,从而使它们随着时间的推移更加可持续。因此,本文旨在生产可持续的沥青路面混合物,降低维护成本,减少使用天然材料进行道路维护以及处置工业废物。为了实现上述目标,最多20%的电弧炉炉渣(EAFS)作为替代天然粗骨料,使用三个不同百分比的钢羊毛纤维(SWF)来制备沥青混合物。的机械性能,例如马歇尔稳定性,裂纹阻力,间接拉伸强度和耐水性。此外,还分析了热分布,并使用三点弯曲测试(TPB)来评估自我修复效率。根据结果,EAFS具有良好的波吸收能力,因为它包含许多金属氧化物。在沥青混合物中同时使用EAFS和SWF可带来明显的时间和节能。另外,用EAF代替20%的天然粗骨料,并通过沥青混合物的重量增加0.2%的SWF是一种有希望的方法。EAFS不仅提供了最佳的治愈结果,而且还提高了混合物的机械性能。在沥青混合物中使用EAFS是支持可持续发展的著名解决方案。