奥布里·阿普格伦(Aubri Applegren)在卡特彼勒公司(Caterpillar Inc.符合该公司在2026年达到双重服务收入的目标,Applegren领导了一支采购团队的计划开发和执行,该团队覆盖了75个供应商,支出巨大的支出。她在2023年实施了20多种策略,并超过了根据合同支出的目标。此外,为了改善一个全球部门的员工经验,Applegren建立了一个员工洞察行动团队。她领导了收集员工反馈并确定改进的障碍,拟议为领导团队批准和承诺的拟议行动,设定了切实的行动和方法,并提出了季度报告。此外,她被任命为买家技能评估和开发计划的计划负责人,从而获得了买家和类别经理的出色反馈。她还领导了一些企业倡议,专注于人才发展和整个领域的长期战略增长。
特别有用,可将跳动和/或旋转驱动对模仿生物学微晶状体的微动体。开创性的例子是Dreyfus等人建造的游泳者。由一连串的杂志珠束缚在红细胞上。[25]在这里,游泳是以衍生方式诱导的精子,也就是说,通过击败支持弯曲波传播的柔性附属物。自从这一突破以来,已经制造了其他几种生物启发的磁性微晶状体,包括由定制的微型磁铁,软磁复合材料和众多体系结构制成的,其中磁性区域会使非磁性鞭毛/附属物依赖。[13,15,16,20,26–29]越来越多地,正在研究附属物对游泳性能的作用,这表明游泳速度随生物学和合成系统的长度,弹性和中风频率而变化。[15,26,28,30]此外,已经确定,生物微晶状体的集体相互作用非常依赖于耦合的鞭毛(附录)动力学和流动在亚氟lagellum长度尺度上产生的动力学。[30]这些相互作用在本质上被利用以促进性能:例如,小鼠精子形成长列火车以提高其速度。[7,10,30–33]然而,对合成系统的附属物设计的严格控制仍然是征税,当需要纳米级特征时,更是如此。通过Maier等人采用的DNA自我组装是DNA的一种特别有希望的方法。基于DNA瓷砖管束生成合成的鞭毛。[26]将这些束式水力组装成旋转的磁珠时,将水力组装成类似几微米的开瓶器样式确认,以类似于细菌的方式驱动翻译运动。尽管组装技术允许对合成鞭毛的扭曲和刚度进行精美的控制,但它们的长度受到寡聚和不受控制的影响。在这种交流中,我们以Maier等人的工作为基础。使用替代DNA自组装策略DNA折纸。此处,通过单链核苷酸的单链DNA环通过单链DNA低聚物的特定结合以构建定位的纳米级附件,以预先确定的方式折叠。[34–37]我们提出了一种调节附属物覆盖磁珠上均匀或用断裂的对称性的方法。通过时间依赖的磁场摇动这些构建体,我们发现虽然结构完全覆盖了DNA折纸,但在很大程度上表现出了
摘要和证据分析:根据美国神经病学学会(MEG)(MEG)(2009)磁脑电图(MEG),也称为磁源成像(MSI)是对脑活动产生的磁场的无创测量。典型的MEG记录是使用具有100到300磁力计或梯度计(传感器)的设备在磁性屏蔽室内进行的。它们被排列在一个名为Dewar的头盔形式的容器中。露水充满了产生超导性的液态氦气。产生磁场图的大脑源可以很容易地映射并显示在核监管MRI上。这会导致视觉显示正常的大脑活动,例如雄辩的皮层用于视觉,触摸,运动或语言的位置。它显示出同样良好的脑活动异常,例如癫痫病
伽马射线暴 (GRB) 的中心引擎仍然是多信使天体物理时代的一个开放和前沿课题。X 射线平台出现在一些 GRB 余辉中,被广泛认为源自磁星的旋转减速。根据 GRB 的稳定磁星场景,X 射线余辉中应该出现 X 射线平台和约 t − 2 的衰减阶段。同时,“正常”的 X 射线余辉是由 GRB 火球的外部冲击产生的。我们分析了 Neil Gehrels 的 Swift GRB 数据,然后找到了三个金样本,它们的 X 射线平台和约 t − 2 的衰减阶段叠加在喷流驱动的正常分量上。基于光变曲线的这些特征,我们认为磁星应该是这三个 GRB 的中心引擎。未来的联合多信使观测可能会进一步检验这种可能性,这将有利于约束 GRB 物理。
¾ 具有三个翼梁和五个翼肋的单体结构 ¾ 机翼蒙皮以 54 英尺的翼尖对翼尖长度固化成一体 ¾ 机翼蒙皮使用糊状粘合剂二次粘合到翼梁和翼肋上 ¾ 通过使用混合编织石墨/铝织物作为所有外表面的表面层来实现防雷 ¾ 使用的材料是 HITEX/E7K8 12K/280 和 145 胶带以及 AS4 E7K8 3K/195 PW 织物。材料鉴定按照军事手册 17 规范进行。进行了层压板和层压板测试,以在冷/干、室温/干、室温/湿和热湿环境条件下产生拉伸、压缩、剪切强度、刚度和极限应变。
摘要 遥感在探测和绘制人类活动在景观中的考古痕迹方面有着悠久而成功的记录。自二十世纪初以来,航空考古的工具和程序逐渐发展,而地球观测遥感经历了技术和方法进步和创新的重大步骤,如今能够以前所未有的精度、分辨率和复杂性监测地球表面。在此过程中获得的大部分遥感数据可能包含有关考古遗址和物体的位置和背景的重要信息。考古学已经开始利用这一巨大潜力,开发基于数字遥感数据和相关工具和程序的考古痕迹探测和绘图新方法。本章回顾了考古遥感和数字图像分析的历史、工具、方法、程序和产品,强调了航空考古和地球观测遥感融合的最新趋势。
1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o. Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。 2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,1 Arizona大学天文学 /管家天文台,美国亚利桑那大学933 N Cherry Ave,Tucson,Tucson,AZ 85721,USA 2,Carnegie科学研究所的天文台,813 Santa Barbara Street,Pasadena,Pasadena,Pasadena,Pasadena,CA 91101,CA 91101,USA 3 USA 3物理学,Ben-Gurion Sletternation,Ben-Gurion Inservation,Ben-Gurion University of Negev,Negev,p.o.Box 653, Be'er-Sheva 84105, Israel 4 Department of Astronomy, University of Texas, Austin, TX 78712, USA 5 Sorbonne Universit ´e, CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France 6 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St.威尔金森大楼,牛津奥克斯1 3RH,英国牛津路10号欧洲南部天文台,Karl-SC Hwarzsc Hild-Str。2,85748德国Garching 11天体物理学科学部,代码660,NASA Goddard太空飞行中心,8800 Greenbelt Rd。,Greenbelt Rd。,Greenbelt,MD,MD,20771,美国,
使用说明:公司医疗政策是管理计划福利的指导。医疗政策不构成医疗建议,也不构成保险的保证。公司的医疗政策每年审查,并基于已发表的,经过同行评审的科学证据和基于证据的临床实践指南,这些准则可用于上次政策更新。公司保留确定医疗政策应用并随时对医疗政策进行修订的权利。所有计划福利的范围和可用性是根据适用的承保范围协议确定的。覆盖协议条款与公司医疗政策条款之间的任何冲突或差异将得到解决,以遵守覆盖协议。覆盖范围的决定是基于个性化医疗必要性的个性化确定以及在个体情况下治疗的实验或研究特征。在没有通过特定治疗方式的政策确定医疗必要性的情况下,以前未考虑有关提出方式的疗效的证据应考虑确定该政策是否代表当前的护理标准。范围:普罗维登斯健康计划,普罗维登斯健康保证和普罗维登斯计划合作伙伴适用(单独称为“公司”,共同称为“公司”)。
扉页 磁控表面粗糙度与弹性模量对磁流变弹性体—铜副滑动摩擦特性影响研究 李睿,1975年生,重庆大学博士研究生,现任重庆邮电大学教授,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 电话:+86-135-94078659;邮箱:lirui_cqu@163.com 王迪,1996年生,重庆邮电大学自动化学院硕士研究生,邮箱:812996901@qq.com 李欣燕,1995年生,重庆邮电大学自动化学院硕士研究生。 E-mail:459148593@qq.com 杨平安,1989年生,重庆大学博士研究生,现职为重庆邮电大学讲师,主要研究方向为智能仿生复合材料、柔性传感器、电磁屏蔽材料与结构设计。 电话:+86-151-23254645;E-mail:yangpa@cqupt.edu.cn 阮海波,1984年生,重庆大学博士研究生,主要研究方向为柔性纳米线复合透明电极的构建及其性能提升。 电话:+86-136-47619849;E-mail:rhbcqu@aliyun.com 寿梦杰,1993年生,重庆大学博士研究生,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 E-mail: shoumj@cqupt.edu.cn 通讯作者 : 杨平安 E-mail : yangpa@cqupt.edu.cn