我们研究了矩形管道中压力驱动层流磁流体动力学流动的能量稳定性,该管道具有横向均匀磁场和电绝缘壁。对于足够强的场,层流速度分布具有均匀的核心和凸起的哈特曼和谢尔克利夫边界层,这些边界层位于垂直和平行于磁场的壁上。该问题通过横向流坐标中的切比雪夫多项式的双重展开进行离散化。临界雷诺数的线性特征值问题取决于流向波数、哈特曼数和纵横比。我们考虑了小纵横比和大纵横比的极限,以便与基于一维基流的稳定性模型进行比较。对于大纵横比,我们发现数值结果与基于准二维近似的结果具有良好的一致性。升力机制在零流向波数极限中占主导地位,并使管道中的临界雷诺数和哈特曼数呈线性依赖关系。小纵横比的管道结果收敛到 Orr 的原始能量稳定性结果,即对平面泊肃叶基流施加展向均匀扰动。我们还研究了特征模态的不同可能对称性以及管道几何中的纯流体动力学情况。
本研究探讨了磁流体力学 (MHD) 和生物对流对混合纳米流体在具有不同基液的倒置旋转锥体上的流动动力学的综合影响。混合纳米流体由悬浮在不同基液中的纳米颗粒组成,由于磁场和生物对流现象之间的相互作用而表现出独特的热和流动特性。控制方程结合了 MHD 和生物对流的原理,采用数值方法推导和求解。分析考虑了磁场强度、锥体旋转速度、纳米颗粒体积分数和基液类型等关键参数对流动行为、传热和系统稳定性的影响。结果表明,MHD 显著影响混合纳米流体的速度和温度分布,而生物对流有助于增强混合和传热速率。此外,基液的选择在确定混合纳米流体系统的整体性能方面起着关键作用。这项研究为优化在 MHD 和生物对流效应突出的应用中利用混合纳米流体的系统的设计和操作提供了宝贵的见解。关键词:磁流体动力学 (MHD);生物对流;混合纳米流体;倒置旋转锥;基液;纳米粒子;流动动力学 PACS:47.65.-d、47.63.-b、47.35. Pq、83.50.-v
世界日益增长的能源需求以及向更清洁、更可持续技术的迫切转变,促使人们深入研究创新的能源存储解决方案。其中,液流电池因其提供可扩展、长时间能源存储的潜力而备受关注。该领域一个有趣的发展是将磁流体动力 (MHD) 驱动器融入盐水液流电池。这种集成提供了一种增强原位流动和提高这些能源存储系统整体效率的迷人方法。
摘要。在本研究中,研究了磁流体力学 Carreau 纳米流体在加热旋转板上旋转微生物的精确近似。板以恒定均匀的倾斜速度移动。通过使用某些物理假设作为具有极限条件的不完全微分条件来获得控制条件。利用束相似性变换将这些非线性条件转换为耦合的标准微分条件。使用最佳同伦研究方法最佳同伦渐近法 (OHAM) 来获取流场因素的图形结果和均匀性质。研究并阐明了旋转微生物的速度、温度、固定和密度的图形表示。发现无量纲微生物的固定随着微生物的生物对流 Lewis 数和浓度差异变量而增加。还发现,由于吸引力和 Carreau 流体边界,无量纲速度会降低。给出了邻近运动边界(如皮肤摩擦系数、努塞尔特数、舍伍德数和运动微生物的厚度数)的轮廓图和数学结果。
图 1:吸附物与非自旋极化表面(∆ E NSP )和自旋极化表面(∆ E SP ,蓝线)相互作用的吸附能比较,两个表面具有相同的总分数占据。
纳米流体具有特殊的特性,使其成为更适用的材料。纳米材料在传热增强方面具有创新的特性。Buongiorno 3 给出了传统液体传热速率增强的理论模型。他强调,只有随机和热泳扩散才是热传输增强的主要机制。纳米材料在提高混合动力发动机、电子设备、核系统冷却器、家用冰箱等的热效率方面非常重要。Shahzad 等人 4 分析了两个旋转盘之间的生物对流对流加热微极纳米材料流。Waqas 等人 5 讨论了具有产热的粘弹性纳米材料的混合对流磁流体动力学流。Anjum 等人 6 探讨了
作者负责热声发动机和MHD发电机原型的开发。他亲自参加了该设施的组装,并在生产过程中与来自法国的设计师进行了密切合作,并与设备的构建有关,因此根据设计师的图纸开发了原型。因此,作者并未要求法国设计办公室Seras开发的间距设备的生产图。但是,在设备的开发过程中,作者被迫介绍自己的创新,新零件和节点,以及原始设计的变化几次。可以说明这一点,可以指出真实热声轮廓的拓扑。图1.1显示了在图纸中设计的设备,并带有紧凑的弯曲声管,以及作者实际制造的设施的风格化T形几何形状。这是为了简化和促进测量系统的生产和组织。
摘要 本文分析了表面粗糙度、磁流体动力学 (MHD) 和微极流体的挤压膜特性对平行台阶板的影响。在 Christensen 理论的基础上,考虑了径向和方位角粗糙度模式的一维结构。针对这两类粗糙度模式,推导了考虑微极流体的修正随机雷诺方程。获得了平均流体膜压力和工作量解析近似解。对 MHD 和非 MHD 情况的结果进行了比较。总体而言,随着粗糙度参数的增加,压力和工作量分别随距离和高度的增加而增加。 关键词:微极流体,MHD,平行台阶板,挤压膜技术,表面粗糙度。 1. 引言流体动力挤压膜特性已经引起了广泛的关注,因为它具有广泛的工业应用,包括陀螺仪、滚动元件、机械部件、动力传输设备、飞机发动机的阻尼膜以及人体的骨骼关节。工业工程和应用科学的许多领域,包括机器零件、汽车部件、动物关节以及湿式离合器片、匹配齿轮,都证明了挤压膜技术应用的重要性。大多数关于挤压膜特性的研究都是在
由于纳米流体在工业和工程领域有广泛的用途,其在拉伸表面上的流动引起了广泛关注。近年来,磁流体动力学纳米流体中的传热和传质已成为研究的重点。本研究考察了在辐射和化学反应作用下,二维磁流体动力学纳米流体在拉伸板上的稳定流动。相似变换用于将偏微分方程转换为常微分方程,这些方程由 Mathematica12.0 求解。在视觉层面上,研究了不同无量纲参数对无量纲速度、温度和浓度分布的影响。观察到,热辐射增强了温度分布,而化学反应降低了浓度。随着辐射和化学反应的影响增加,物理参数(即努塞尔特数)减小,舍伍德数增加。在几种特殊情况下,将得到的数值结果与以前发表的结果进行了比较,发现结果非常一致。
4.3.1 电离技术 .................................................................................................... 142 4.3.2 种子研究 .................................................................................................... 158