碰撞结果由多种因素决定,例如表面形貌以及本体和地下材料的刚度。例如,最近的研究表明,软聚合物涂层可能提供一种新颖的技术解决方案,可以显著减少甚至消除飞溅。[11] 然而,迄今为止还无法以动态可调的方式改变此类涂层的机械性能。磁活性弹性体 (MAE),也称为磁流变弹性体,是一种物理性能可通过外部磁场控制的智能材料。[2,12–20] 它们是混合材料 [21],由软聚合物基质(有机成分)和嵌入的铁磁微米级颗粒(无机成分)组成。之前的大部分研究集中在 MAE 的本体特性上。就本体机械性能而言,MAE 在较高的磁场下会变得更硬。这意味着它们的弹性模量会随着磁场的增加而增加。 [22] 然而,最近人们意识到,MAE 的表面性质在磁场中也会发生显著改变。特别是,润湿性[23–27]、表面粗糙度[28–33]、粘合性[23,24,34]和摩擦现象[35–37]都被发现强烈依赖于磁场。众所周知,磁场会影响磁流体液滴在刚性非磁性基板上的撞击动力学[38–40],但非磁性液滴撞击磁性基板的情况似乎是迄今为止被忽视的研究方面。MAE 本体和表面性质发生变化的物理原因是磁化填料颗粒的重构,即由于它们之间的磁相互作用而改变它们的相互排列。只有在足够柔软的聚合物基质中,微观结构才会发生显著的重构。因此,获得适当的基质柔软度是 MAE 制造中的重要挑战之一。根据软 MAE 的大磁场诱导结构变化,可以假设 MAE 表面的液滴飞溅也会受到磁场的影响。本文旨在证明通过外部磁场调节 MAE 表面液滴飞溅行为的可行性。基于高速视频图像分析,我们表明通过改变磁通密度,可以在撞击方式之间切换
扬声器应采用双向表面贴装设计,带有内部无源分频器和 60W 低插入损耗 70/100V 变压器,用于恒压分布式线路。 6 英寸矿物填充聚丙烯低音扬声器,带丁基橡胶环绕和 1 英寸 (25 毫米) 钛圆顶,带磁流体冷却钕磁铁系统,应安装在专有注塑 ABS、防紫外线褪色外壳中。外壳的防尘防溅等级应超过 IEC60529 IP-65,防盐防潮等级应超过 Mil STD 810G。内置密封输入面板盖和粉末涂层铝格栅。扬声器颜色应为 RAL 9016(白色)或 RAL 9017(黑色)。设备应附带防滑 U 型支架,该支架的粉末涂层与外壳颜色相同。扬声器应具有可选的滚花球形接头云台安装系统,并带有快速连接/拆卸机制。扬声器应符合以下安全标准:CE。扬声器应满足以下性能规格:轴上系统频率范围应为 57 Hz 至 20 kHz (-10 dB)。在建议使用高通保护的全空间环境中,宽带灵敏度应为 89 dB(1m 处为 2.83 V)SPL。长期功率处理额定值为 EIA-426B 中定义的 80W。最大连续输出应为 108 dB SPL,最大峰值输出应为 114 dB SPL。标称覆盖模式应为 100 度锥形。变压器应具有 60W、30W、15W、7.5W(3.8W 70V)的功率抽头,外加 8 欧姆旁路,可使用机箱背面的滑动开关进行选择。扬声器 Euroblock 输入连接应允许直接连接到 70 伏、100 伏或低阻抗放大器。扬声器外形尺寸为 13.90" x 7.73" x 8.66" (353mm x 196mm x 220mm),单位净重为 12.02lbs (5.45kg),保修期为 5 年。扬声器为 Atlas + Fyne FS-6T 表面安装扬声器。
芬兰赫尔辛基。johan.bobacka@abo.fi 非侵入式体表化学传感能够持续追踪与人类健康和福祉至关重要的生物标志物。通过附着在人体皮肤上的化学传感器和生物传感器,可以非侵入式地获取有关各种分析物的信息。最常用的是电化学和光学转换方法。典型方法包括使用固体接触离子选择电极测定电解质(Na+、K+、Ca2+、Cl-)和 pH 值,以及使用基于酶的电流生物传感器测定葡萄糖和乳酸 [1]。当前,非侵入式化学传感研究主要集中在汗液分析上,汗液是一种容易获取的样本,因为它会自然从人体排泄,尤其是在体育锻炼过程中 [1]。在其他样本类型中,唾液和泪水受到的关注相对较少。人们投入了大量精力来测定间质液 (ISF) 中的葡萄糖。市面上可穿戴的持续血糖监测设备大多依靠插入皮肤或植入皮下的生物传感器来获取 ISF。从用户的角度来看,这仍然不是最佳选择,完全非侵入性的方法会更好。尽管人体皮肤具有出色的屏障性能,但利用反向离子电渗疗法无需对皮肤进行任何物理穿刺,就可以非侵入性地提取 ISF。此外,最近开发的磁流体动力学 (MHD) 采样方法被证明比传统的反向离子电渗疗法效率高 13 倍 [2, 3]。基于 MHD 技术的可穿戴非侵入性血糖监测仪在一项临床性能研究中与参考血糖测量值具有很强的相关性,该研究包括 100 多名成年参与者,提供了超过 900 个数据点,涵盖 4-26 mM 的葡萄糖浓度范围。在本演讲中,将简要概述非侵入性在体化学传感和生物传感,然后介绍基于 MHD 提取 ISF 的非侵入性血糖监测的具体示例。 Z. Boeva、Z. Mousavi、T. Sokalski、J. Bobacka、TrAC 趋势。肛门。化学。 172 (2024) 117542。 2. TA Hakala、A. García Pérez、M. Wardale、IA Ruuth、RT Vänskä、TA Nurminen、E. Kemp、ZA Boeva、J.-M。 Alakoskela,K. Pettersson-Fernholm,E. Haeggström,J. Bobacka,科学。报告 11 (2021) 7609。 3. E. Kemp、T. Palomäki、IA Ruuth、ZA Boeva、TA Nurminen、RT Vänskä、LK Zschaechner、A. García Pérez、TA Hakala、M. Wardale、E. Haeggström、J. Bobacka、Biosens。生物电子。 206(2022)114123。
核动力船舶推进 © M. Ragheb 6/21/2021 1.简介 有几种趋势正在塑造海军舰艇技术的未来愿景:全电动舰艇、全封闭喷射泵推进器、定向能激光、微波和电磁武器、高超音速巡航导弹、隐形技术、无人驾驶飞行器 (UAV)、群体水下无人驾驶飞行器 (UUV) 机器人潜艇、推进器喷水推进、磁流体动力推进、濒海舰艇和停泊驳船用于发电。全电动船舶推进概念被采用为未来美国水面战斗动力源。下一个发展或先进电力系统 (AEPS) 涉及将几乎所有船上系统转换为电力;甚至最苛刻的系统,例如航空母舰上的推进器和弹射器。它将包括新武器系统,例如现代电磁轨道炮和自由电子激光器以及飞轮和超级电容器储能系统。美国海军计划到 2030 年代中期将其 284 艘舰艇舰队扩大到 355 艘。随着高超音速武器运载系统的出现,将美国海军 (USN) 配置为具有远程无人机打击能力的小型核动力平台是未来的潮流。高超音速将由一支由小型和快速舰艇组成的分布式舰队来对抗。任何类型的导弹群威胁都对美国航母构成威胁,而它们可能会变得更小,由一组由人类驾驶的飞机指挥的无人机组成。它们将是垂直发射车,随身携带远程一次性加油机或微型核反应堆,作为长期盘旋和续航的能源。这些舰船将更小,采用核动力。常规舰船每隔几天就需要加油,而且必须配备加油机。核动力舰船的速度和续航能力要快得多。太空是下一个战场,武器平台将更多、更小、无人驾驶。航空母舰是意图和全球野心的声明,也是军事力量的明显投射。它们是一支多才多艺的强大力量,能够进行人道主义和灾难救援以及高端作战。拥有 5,000 名船员的航空母舰正面临脆弱性危机,这将导致小型舰船从分散地点发射无人机。美国海军拥有 10 艘航母,英国有两艘,中国有一艘,正在建造另一艘。一艘美国航母上有 3,000 多名水手。俄罗斯、法国和意大利各有一艘航母,印度也加入了这一行列。美国海军每年要花费 1 亿多美元来维持一艘尼米兹级航母的海上运行,这还不包括飞行作业、弹药和船员工资的费用。它们作为打击群在高威胁地区运作,包括防空驱逐舰、反潜护卫舰和攻击潜艇,以及运载食物和弹药的油罐车和固体支援舰。世界各地的海军都使用三分法则:或者说每艘在海上的船,一艘准备部署,而另一艘则返回港口进行维护。核动力航母(如尼米兹级)的航程不受限制,而常规动力航母(如伊丽莎白女王号)的航程为 10,000 英里。
DOE:能源部、DOD:国防部、NREL:国家可再生能源实验室、NETL:国家能源技术实验室、ORNL:橡树岭国家实验室、AFRL:空军研究实验室、AFTC:空军测试中心、HAFB:霍洛曼空军基地、MHPCC:毛伊高性能计算中心、UTEP:德克萨斯大学埃尔帕索分校、GFDL:地球物理流体动力学实验室、MHD:磁流体动力学、HPC:高性能计算研究资助的研究活动● UTEP(PI Kumar、Bronson、Sharma、Tandon、Tosh)、UNM(Lead、PI Vorobieff)、NMSU、NMT、PVTAMU V 和 Sandia(PI Tezaur)。,“里奥格兰德百亿亿次级模拟高级研究联盟 (Grande CARES)”,DOE NNSA MSIPP,2022-27,500 万美元(UTEP 125 万美元) ● V. Kumar (PI),“6 马赫钝拱顶的边界层转变测量”,AFOSR,2022-24,65 万美元 ● V. Kumar (PI),扩大国家高级建模与仿真基金会,DOE/ASCR,2022-23,4.4 万美元 ● A. Bronson (PI)、V. Kumar (Co-PI)、O. Cedillos (Co-PI),“HF 合金熔体反应润湿形成 B4C 填料床陶瓷复合材料”,AFOSR,2021-2024,45 万美元 ● V. Kumar ( PI )、R. Edmonds (合作者 - 霍洛曼空军基地),“HHSTT 雪橇水制动现象的 CFD 建模”,AFOSR, 2019 年 6 月 - 2022 年 12 月,360,000 美元(AFOSR 270,000 美元)● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2022 年,60,000 美元● V. Kumar(PI)、V. Tandon、B. Calvo,“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2021 年,65,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2020 年,64,000 美元● V. Kumar(PI)、N. Agarwal(共同 PI),“探索适合 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会(TWC),2019 年,32,000 美元 ● V. Kumar (PI)、N. Agarwal (Co-PI),“探索针对 14-21 岁残疾学生的 STEM”,德克萨斯劳动力委员会 (TWC),2018 年,26,000 美元 ● C. Ramana (PI)、V. Kumar (CO-PI)、A. Bronson (CO-PI)、D. Hodges (CO-PI),“收购原子层沉积系统以实现用于极端环境应用的先进高电气强度材料”,AFOSR,2019-20 年,590,000 美元 ● V. Kumar ( PI )、R.Gudimetla (合作者 –AFRL),“遥感和成像物理学:开发深湍流对长路径激光传播影响的新指标”,AFOSR,2017 年 5 月 – 2020 年 5 月,150,000 美元 ● A. Bronson (PI)、V. Kumar (Co-PI),“Hf-Ti-Me 合金熔体与 B4C 的计算实验反应润湿”,AFOSR,2017 年 8 月 15 日 – 2020 年 8 月 14 日,668,710 美元(AFOSR 45 万美元)● V. Kumar (PI)、W. Spotz(合作者 – Sandia),“流化床实验的高保真计算模型”,NETL - 能源部-化石能源,2015 年 9 月 1 日 – 2018 年 8 月 31 日,400,000 美元● V. Tandon (PI)、V. Kumar (Co-PI)、N. Soheil (Co-PI)、C. Ferregut (Co-PI)、W. Stern - GFDL (合作者),● V. Kumar (Co-PI),“了解气候变化对德克萨斯州交通系统的影响和成本”,TxDOT,2015 年 9 月 - 2017 年 8 月,25 万美元 ● V. Tandon (PI)、V. Kumar (Co-PI),“了解气候变化对公路水力设计程序的影响”,SPTC 研究、教育和推广支持,2015 年 11 月 1 日至 2017 年 10 月 31 日,9 万美元 ● V. Kumar (PI),“Sunshot 粒子接收器项目:近黑体、封闭式粒子接收器与流化床热交换器集成”,分包(NREL、DOE),2014 年 12 月 - 2015 年 3 月,27,808 美元