先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
磁场可以作为氢能收集的唯一触发器,尽管磁场具有穿透深度深、噪音和损伤小、控制参数(即幅度和频率)灵活等优势。多铁性和磁电纳米复合材料为利用磁场直接触发制氢提供了机会。[11–14] 虽然磁场可以影响磁性材料中电子的运动,但它们不能产生催化反应所必需的内部电场和电荷。相反,当施加磁场时,多铁磁电复合材料中会发生磁电耦合。在典型的应变介导磁电复合材料中,磁性元件响应磁场并传输磁致伸缩
人们越来越关注新型磁电 (ME) 材料,这种材料在室温 (RT) 下表现出强大的 ME 耦合,可用于高级存储器、能源、自旋电子学和其他多功能设备应用,利用通过磁场控制极化和/或通过电场控制磁化的能力。获得具有强 ME 耦合的 ME 材料、了解其起源并操纵其加工和成分以实现室温下的大 ME 系数是多铁性研究的重要一步。为了解决这个问题,我们研究了 Ni 掺杂的 Pb(Zr 0.20 Ti 0.80 )O 3 (PZT) 的多铁性和 ME 特性。我们发现 Ni 掺杂 PZT 的铁电(TC ~ 700 K)和弱铁磁(~ 602 K)相变远高于 RT,导致强 ME 耦合系数( E,31)为 11.7 mVcm -1 Oe -1(H ac = 1 Oe 和 f = 1 kHz)。虽然 X 射线衍射表明这是一种单相材料,但高分辨率透射电子显微镜揭示了有和没有 Ni 存在的区域;因此两相之间的磁电耦合是可能的。第一性原理计算表明 (Ni Pb ) × 缺陷可能是造成 Ni 掺杂 PZT 中实验观察到的磁性和 ME 耦合的原因。我们进一步证明 Ni 掺杂 PZT 表现出低损耗角正切、低漏电流、大饱和极化和弱
行为。大多数动力学研究都是在纯缓冲液中进行的,因为这类研究的标准技术是基于表面等离子体共振 (SPR) 测量的,而血浆蛋白的非特异性结合会扭曲高浓度 (> 1%) 血清样品的动力学数据 [ 1 ];因此,目前还无法在生物基质中进行详细的动力学研究。微尺度热泳动 [ 2 ] 和高效亲和色谱技术 [ 3 ] 已用于药物和血清蛋白之间的分子相互作用研究,并已证明其在获取平衡常数 (例如,K d:解离常数) 方面的有效性,尽管它们不能实现实时相互作用观察,也不能提供动力学信息,例如反应速率常数。
(1) 超过这些额定值的应力可能会造成永久性损坏。长时间暴露在绝对最大条件下可能会降低设备可靠性。这些只是应力额定值,不支持设备在这些或任何超出规定条件的其他条件下正常运行。 (2) 输入端通过二极管钳位到电源轨。输入信号如果能超出电源轨 0.5 V 以上,则必须限制电流,差分放大器输入引脚除外。 (3) 这些输入没有内部过压保护。差分放大器输入引脚必须限制为 5 mA(最大值)或 ±10 V(最大值)。 (4) 功率受限;注意最大结温。
完整作者列表: Pradhan, Dhiren;田纳西大学诺克斯维尔工程学院,材料科学与工程;橡树岭国家实验室纳米相材料科学中心, Kumari, Shalini;宾夕法尼亚州立大学帕克分校,材料科学与工程系 Puli, Venkata;圣卡洛斯联邦大学,化学 Pradhan, Dillip;NIT Rourkela,物理与天文系 Kumar, Ashok;国家物理实验室 (CSIR),顶级标准与工业计量 (ALSIM) Kalinin, Sergei;橡树岭国家实验室,凝聚态科学 K Vasudevan, Rama;橡树岭国家实验室,纳米相材料科学中心 Katiyar, Ram;波多黎各大学,Rio-piedras,物理学 Rack, Philip;田纳西大学;橡树岭国家实验室纳米相材料科学中心
MENPs 最重要的物理参数是 ME 系数;对于 30 纳米 BaTiO-OC Fe o 2 4 3 MENPs,典型的 ME 值在 100 mV·cm −1 ·Oe −1 的数量级上。对于这些 30 纳米纳米粒子,核心直径约为 15 纳米。尽管尺寸相对较小,但由于核心通常具有较高的磁各向异性,纳米粒子在室温下仍不会陷入超顺磁状态。核心和壳之间的 ME 耦合可能会进一步增加核心的磁各向异性。这些 MENPs 的毒性已被广泛研究,并通过体外和体内实验证明在适当剂量下是安全的 [13]。总体而言,在小鼠研究中,每 1 克体重少于约 10 纳克的 MENPs 剂量被证明是安全的。相比之下,每 1 克体重 1 纳克的剂量在刺激和药物输送方面取得了明显的积极效果。
变压器噪声研究 大型和小型交流变压器是发射噪声研究和开发的主题 [I - 13,291,因为法律要求配电变压器噪音更小,而且人们希望提高变压器的质量和适销性。变压器噪声源于变压器中机电力的周期性循环。这些力导致变压器周围的绕组、铁芯和外壳相对于彼此移动。