该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振是由于Zeeman拆分对材料的宏观磁化而导致自旋进液磁矩相互作用的影响。核心在铁磁共振时达到负渗透性。由于负渗透性,铁素体将磁化点抵消到施加的直流电场上给出的铁氧体芯的一端。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。简介:一种有趣的科学现象,但尚未理解的是磁性。磁性材料用于许多重要的技术,从大规模发电,存储,传输电动机和发电机的高性能磁铁到纳米级上的磁性信息,包括使用SpinTronics概念的存储,逻辑和传感器设备。物质的磁性继续引起科学的好奇心和想象力。电子的自旋是磁性的基本组成部分,铁磁,铁磁和抗磁磁性材料的多样性以及磁磁性和磁磁材料的多样性是由附近电子旋转的材料中附近电子旋转的不同耦合产生的。磁性材料的特征,行为和效用受材料内部竞争相互作用引起的显微镜旋转构型的影响。外源磁,电场和光场以及光本身都会影响或修改磁化本身。这为将来的超湿,超快速和低功率微电子系统的发展打开了大门。即将到来的技术时代(IoT)时代将受到技术,经济,环境和社会的这些成就的影响[1]。
立方体卫星越来越多地被指定用于要求严格的天文和地球观测任务,在这些任务中,精确指向和稳定性是关键要求。立方体卫星很难达到这样的精度,主要是因为它们的转动惯量很小,这意味着即使是很小的干扰扭矩,例如由剩磁矩引起的扭矩,也会对纳米卫星的姿态产生重大影响,当需要高度的稳定性时。此外,硬件在功率、重量和尺寸方面的限制也使这项任务更具挑战性。最近,萨里大学开展了一项博士研究计划,以研究立方体卫星的磁特性。研究发现,通过良好的工程实践,如减少使用导磁材料和最小化电流环路面积,可以减轻干扰。本文讨论了纳米卫星干扰的主要来源,并介绍了一项调查和简要介绍磁性清洁技术,以最大限度地减少剩磁场的影响。它的主要目的是为立方体卫星社区提供指导,以设计未来具有改进姿态稳定性的立方体卫星。然后,我们介绍了迄今为止对立方体卫星和纳米卫星的残余磁偶极子测定新技术的发现。该方法通过在航天器上实施八个微型三轴磁力仪网络来执行。它们用于在轨道上实时动态确定航天器的磁偶极子的强度、方向和中心。该技术将有助于减少磁干扰的影响并提高立方体卫星的稳定性。开发了一个软件模型和一个使用八个通过 Raspberry-Pi 控制的磁力仪的硬件原型,并使用 Alsat-1N 立方体卫星的吊杆有效载荷和为验证目的而开发的磁空心线圈成功进行了测试。引用本文:A. Lassakeur、C. Underwood、B. Taylor 和 R. Duke,《立方体卫星和纳米卫星的磁清洁度计划以提高姿态稳定性》,《航空航天技术杂志》,第 13 卷,第 1 期,第 25-41 页,2020 年 1 月。
功能性磁性纳米结构gurvinder Singh生物医学工程学院,悉尼大学抽象的大小和形状控制的磁性纳米颗粒具有吸引人的磁性特性,这导致了其潜在的磁共振成像(MRI)对比剂,药物增强剂,药物输送,磁性动态稳定和磁性高渗透性。但是,挑战是优化磁性纳米颗粒的设计标准(尺寸,形状和晶体结构),因为磁性纳米颗粒的实际应用取决于其磁性。例如,在MRI中用作对比剂需要使用高磁矩的磁性纳米颗粒,但不适用于治疗应用。寻求更好的性能需求,以设计原子或纳米颗粒的自组装的下一代磁性纳米材料。在我的演讲中,我将讨论下一代高性能多功能磁性纳米材料的关键设计标准,并在不同的长度尺度上及其对MRI对比剂,药物输送和磁性高温的潜在应用。个人资料Gurvinder Singh博士是悉尼大学生物医学工程学院的研究员。他于2004年获得印度印度科技学院的材料工程学士学位,2006年在印度罗尔基,印度罗基,纳米材料的硕士学位,2006年在德国,德国的纳米材料学士学位,以及2011年的丹麦AARHUS大学的纳米技术博士学位。他在领先的期刊上撰写了65多种经过同行评审的文章,包括科学,高级材料,ACS Nano,高级功能材料。他曾在以色列韦兹曼科学学院和挪威挪威科学技术大学担任博士后研究员和研究科学家。他的研究重点是研究新的合成可扩展方法,以在不同长度尺度上设计功能性生物相容性的纳米材料,这些纳米材料可以响应不断发展的应用,例如成像,传感,诊断和医学。他已经在挪威研究委员会和行业资助的几个项目中获得了200万AUD的研究资金,其中包括NHMRC最近的设备“磁性高热”赠款。他是纳米局技术领域的Akzonobel Nordic Research奖(2015年,瑞典)。欢迎各个级别的员工和学生参加。场地和时间:此演讲将于10月13日星期二下午2点通过Zoom Meether网址:https://uws.zoom.us.us/j/98557079852?会议ID:985 5707 9852密码:490438查询:William S. Price Ext教授。0404 830 398电子邮件:w.price@westernsydney.edu.au
(Ln) 基复合物应运而生,表现出高磁阻塞温度,通常还具有足够的氧化还原稳定性。[16–18] 然而,最近旨在研究电子通过单个 SMM 的磁性系统的实验表明,至少在基于 Ln 的双层 SMM 中,4f 电子通常难以接近,因为它们的空间局域化和能量位置远离费米能级。[19–25] 因此,通过电子传输直接寻址分子内部的 4f 磁矩需要系统具有可行能量的电子轨道和一定的空间延伸,就像早期的 Ln 物种一样 [25] 或电子态与 4f 轨道强烈杂化而不会改变磁性复合物特殊磁性的系统。 [26,27] 在这方面特别有趣的是功能化的内嵌二金属富勒烯,它在两个铁磁耦合的 Ln 原子之间引入了单电子键,是目前最有前途的 SMM 类型之一。 [28] 然而,尽管它们的碳笼完全吸收了表面沉积时的电荷重新分布,有利于其磁稳定性, [29] 但与此同时,它们的内嵌结构阻碍了直接进入分子内部,这在应用方面是不可避免的。 因此,到目前为止还没有报道过任何实验证明能够在传输测量中进入它们的磁芯。 在本文中,我们重点研究内嵌二金属富勒烯复合物 Ln 2 @C 80 (CH 2 Ph),以下称为 { Ln 2 }。 [30] 这些分子由一个大致呈球形的富勒烯笼组成,里面包裹着两个 Ln 3 +离子,见图 1 a。两种镧系离子共用一个单电子共价键,通过在 C 80 笼中添加 CH 2 Ph 侧基来稳定该键。这种金属-金属键导致 [Ln 3 + – e – Ln 3 + ] 系统中的 Ln 中心之间发生强交换,从而导致块体 [28] 和亚单层中均具有出色的磁性。[31,32] Liu 等人 [33] 已证明 Ln-Ln 键合分子轨道 (MO) 分裂成两个完全自旋极化且能量分离良好的组分,未占据组分位于笼基最低未占据 MO (LUMO) 下方并部分定位在 C 80 笼上,因此原则上可以在扫描隧道显微镜/光谱 (STM/STS) 中寻址。
拉合尔大学的物理系,巴基斯坦B 53700,B物理学系,工程与应用科学系,Riphah International University,Haji International University,Haji International Complex I-14,伊斯兰堡,巴基斯坦C物理学系,伊斯兰堡C.box 84428,riyadh 11671,沙特阿拉伯,含铅二酰基的铅掺杂合金的磁性,电子和结构特性与通用公式PRPB x bi 1-x(x = 0,0.25,0.55,0.50,0.75,0.75,0.75,1.0)的作用(在该论文中)为了分析物理特性,我们执行了全电位线性的增强平面波和本地轨道(FPLAPW+LO)技术,而在Perdew-Burke-ernzererection(Perdew-burke-ernzererfore)扩展了Kohn-Sham方程(KSE)中的Exchange-Crolsation势能。通过通过Murnaghan的状态方程拟合总能量来计算结构参数,晶格常数,体积,大量模量,压力衍生物和能量。从自旋极化计算中报道了化合物的结构稳定性。在多数和少数式旋转中都计算了这些化合物状态状态的电子能带以及总和的部分密度,将其描述为金属。PR(5D +4F)和(PB +BI)2P状态的相似光谱强度占对费米能水平附近状态密度的大部分贡献。针对掺杂化合物的超细胞计算的自旋磁矩表明它们是磁性材料。从PRBI化合物中自旋磁矩的比较中,我们注意到掺入PRBI化合物后的磁矩有所改善。(2024年2月11日收到; 2024年6月10日接受)关键词:密度功能理论,自旋磁矩,穆纳格汉(Murnaghan)状态方程,广义梯度近似,praseodymium铅biSusthide 1。引言即使各种稀土(Re)硫代基因和pnictides具有直接的NaCl(岩石盐)结构,但它们的磁性和电子特性极大地吸引了研究人员的好奇心[1]。另一方面,科学家当前的重点一直在寻找用于晚期旋转设备的新型稀土材料[2-5]。在从III-V半导体外上ed出现固体材料的发展之后,最近对这些固体材料的研究的关注得到了极大的增强[6]。结果,发现了一种创建电气设备(例如金属基晶体管)的方法。由于高铁在核冷却中的潜在用途以及在温度较低的情况下对混合核秩序和电子现象的研究[7],粉红色果仁氏蛋白酶引起了极大的兴趣。通过根据其价值对稀土和相关复合材料进行分类,可以对其物理特性进行基本描述。价值修饰可以与稀土晶格参数的变化有关[8]。元素的定期表将praseodymium靠近葡萄园,这是铜的几个独特特征,以及其 *通讯作者的特征:zmelqahtani@pnu.edu.edu.sa https://doii.org//doi.org/10.15251/djnb.202222224.192.8557
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。
并提出极有可能通过实验实现。19 最近,人们利用第一性原理 DFT 计算来计算某些稀土氮化物钙钛矿 ABN 3(A = La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 和 B = Re、W)的磁矩和热力学稳定性,并提出了它们在氮化物材料领域的众多技术应用。16 在这方面,DFT 现在被认为是一种估算所研究材料的电子和光电特性的优雅方法。电子和光电特性主要由材料的带隙决定。虽然采用局部密度近似 (LDA) 和广义梯度近似 (GGA) 的 DFT 计算低估了 E g 值,33 – 36 但未经筛选的混合函数和 Perdew – Burke – Ernzerhof – Hartree – Fock 交换 (PBE0) 函数会高估化合物相对于其实验对应物的带隙能量。37 – 39 在这方面,使用混合交换关联 (XC) 函数,例如 Heyd – Scuseria – Ernzerhof (HSE)、Becke-3 参数-Lee-Yang-Parr (B3LYP) 和 B3PW91,通过单次 GW (G 0 W 0 ) 近似完成的 DFT 计算可以预测接近实验结果的化合物的 E g 值。 14,33,40 – 48 此类计算的主要缺陷在于它们对计算要求高并且需要高端服务器来运行它们。在这种情况下,机器学习(ML)现在被认为是一种有效的替代途径,可以避免与 DFT 计算相关的固有计算成本,并有助于在材料特性和目标变量(此处为 Eg)之间建立一个简单的模型。49 – 60 尽管最近已成功实施 ML 方法预测氧化物、卤化物钙钛矿和双钙钛矿化合物的带隙,61 – 66 但在预测氮化物钙钛矿的带隙方面尚未发现此类报道。考虑到上述问题,本文旨在从 ML 模型中预测 ABN 3 钙钛矿的带隙。已经进行了 DFT 研究以估计两种新型氮化物钙钛矿 CeBN 3(B = Mo,W)的电子能带结构、Eg 值和光电特性。本文的结构如下:第2节讨论了计算方法,包括ML方法和第一性原理DFT计算。第3.1节分享了ABN 3钙钛矿数据的清理和预处理。第3.2节讨论了ML模型的训练和验证。第3.3节致力于理解两种新发现的氮化物钙钛矿化合物CeBN 3 (B = Mo, W)的结构性质和稳定性。第3节。图4以CeBN 3 化合物的电子能带结构和带隙计算为框架,采用不同层次的DFT理论进行计算。相应的光电特性已在第3.5节中重点介绍。本研究的总体结论已在第4节中讨论。
H。Ambreen A,S。Saleem A,S。A. Aldaghfag B,M。Zahid C,S。Noreen C,M。Ishfaq A,M。Yaseen A,*一种自旋 - 呼吸链球化学和铁 - 毛线 - 毛发(软)材料和设备材料和设备实验室,物理学系,Budriculture of Fystricant of Fystricant byrive of Falthricant of Falthican bysalabad 3804040404004040404040404040年404040404040404040年。科学,努拉·宾特·阿卜杜勒拉赫曼公主,P。O。Box 84428,Riyadh 11671,沙特阿拉伯C化学系,农业大学Faisalabad,Faisalabad 38040,巴基斯坦在这项研究中,旋转极化密度功能理论(DFT)实施以预测BE 1-X CR x SE的物理特征,x se x se x se(x = 6.5%),12.5%,12.5%,12.5%。纯BESE化合物的电子特性显示出半导体的行为,但在Cr掺杂bese阐明了所有掺杂浓度的BESE半金属铁磁(HMF)。结果阐明了每CR -ATOM的总磁矩M TOT为4.0028、4.0027、4.0021和4.0002μb,分别为6.25%,12.5%,18.75%,25%的浓度,磁性浓度和磁性主要来自杂质的磁性旋转旋转密度的d- state。此外,还计算了光学参数,以确定掺杂对材料对能量跨度的响应的影响,从0到10 eV。光学研究表明,所研究的系统在紫外线范围内具有最大的吸光度和光导率,并具有最小的反射。总体结果表明,CR掺杂的硒化氏酵母(BESE)是用于旋转和光电设备的有前途的材料。在1983年,De Groot等人观察到了HMF行为。(收到2024年2月29日; 2024年4月29日接受)关键词:Spintronics,DFT,磁密度,光学参数1.从过去几十年来的引入中,对新兴的化合物组进行了密集的实验和理论工作,该化合物被认为是稀磁半导体(DMS)。DMS已在自旋产业和多功能电子设备(光电,气体传感器,现场发射设备,非挥发性存储器设备和紫外线吸收器)中使用[1-6]。DMS基于III – V和II – VI二元化合物,这是铁磁(FM)和半导体特性的组合。DMS是通过在宿主材料矩阵[7]中掺入过渡金属(TM)来实现的,该矩阵[7]由于电子特征的变化而改变了宿主系统的E G [8],从而导致一半金属铁磁材料,导致金属和半导性行为,显示金属和半导向行为。是第一次研究半赫斯勒化合物的带结构,例如PTMNSB和NIMNSB [9]。在理论上和实验上都预测了几位研究人员,HMF在各种材料中的行为,例如钙钛矿化合物LA 0.7 SR 0.7 SR 0.3 MNO 3 [10],Heusler Alloys Co 2 Mnsi [11] [11] v掺杂的MGSE/MGTE [15],Bete [16],Znse [17]和Znte [18]。
1。INORGANIC CHEMISTRY: Group theory: The concept of group, Symmetry elements and symmetry operations, Assignment of point groups toInorganic molecules, some general rules for multiplications of symmetry operations, Multiplication tables for water andammonia, Representations (matrices, matrix representations for C 2 V and C 3 V point groups irreducible representations), Character and character tables for C 2 V and C 3 V point groups.群体理论在化学键合中的应用(在不同几何和π键的杂交轨道和杂种轨道中的杂交轨道。BF 3,C 2 H 4和B 2 H 6中的分子轨道对称性,非水溶剂:证明需要非水溶性溶液化学和水作为溶剂失败的因素。硫酸的溶液化学:物理特性,H 2 SO 4中的离子自脱水,具有高粘度的高电导性,H 2 SO 4的化学性能为酸,作为脱水剂,作为氧化剂,作为氧化剂,作为一种培养基酸碱中和中和含量分化的溶剂。液体BRF 3:物理特性,BRF 3中的溶解度,自我离子,酸基碱中和反应,溶解反应和过渡金属氟化物的形成,无机氢化物:分类,制备,粘结及其应用。过渡金属化合物邦德斯托氢,羰基氢化物和氢化物阴离子。Tanabe Sugano图,Orgeldiagrams,B,C和β参数的评估。分类,命名法,韦德的规则,制备,结构和结合(硼烷)(硼烷)和碳纤维,螯合物,决定螯合物稳定性的因素(环大小,主题的氧化状态,主题的氧化状态,主题的均值,主题的均值); Organic Reagents in Inorganic Chemistry: Use of the following reagents in analysis: Dimethylglyoxime (in analytical chemistry), EDTA (in analytical chemistry and chemotherapy), 8-Hydroxyquinoline (in analytical chemistry and chemotherapy), 1, 10-Phenanthroline (in analytical chemistry and chemotherapy), Thiosemicarbazones (in analytical chemistry and chemotherapy),二乙烷(在分析化学和化学疗法中)。Metal-Ligand Bonding-I: Recapitulation of Crystal Field Theory including splitting of d -orbitals in different environments, Factors affecting the magnitude of crystal field splitting, structural effects (ionic radii, Jahn-Teller effect),Thermodynamic effects of crystal field theory (ligation, hydration and lattice energy), Limitations of crystal field theory, Adjusted Crystal Field Theory (ACFT), Evidences for Metal-Ligand在复合物中重叠,分子轨道理论是conthe骨,四面体和方形平面复合物(不包括数学处理)。磁化学:磁矩的起源,磁敏感性(磁磁性,顺磁性),仅旋转力矩,罗素·萨德(Russell SaunderAtomic Spectroscopy: Energy levels in an atom, coupling of orbital angular momenta, coupling of spin angular momenta, spin orbit coupling, spin orbit coupling p2 case, Determining the Ground State Terms-Hund's Rule, Hole formulation (derivation of the Term Symbol for a closed sub-shell, derivation of the terms for a d2 configuration), Calculation of the number of themicrostates, Electronic Spectra-I: Splitting of spectroscopic terms (S,P,D.F and G,H,I), d 1 -d 9 systems in weak fields (excluding mathematics), strong field configurations, transitions from weak to strong crystalfields, Electronic Spectra-II: Correlation diagrams (d 1 -d 9 ) in OhandTd environments, spin-crossoverin coordination compounds.
磁性生物传感和肌肉骨骼修复。jeet Kumar Gaur,机械工程系,IISC班加罗尔,2024年11月21日,上午11:00,会议室:我@IISC摘要的开发用于肌肉骨骼修复的高级纳米复合材料代表了生物医学工程的重大飞跃。这些纳米复合材料利用水凝胶和羟基磷灰石(HAP)的特性来应对组织修复和再生的关键挑战。水凝胶具有高生物相容性和水含量,可为各种应用(包括软骨修复)提供灵活性和适应性。同样,HAP复合材料由于与天然骨矿物质的相似性而获得了骨骼替代的牵引力。将纳米颗粒整合到这些材料中可以显着增强其机械性能,生物活性和整体肌肉骨骼修复的有效性。水凝胶是由于其三维网络而以其生物相容性和高水位容量而闻名的柔性聚合物。这些水凝胶可以通过使用各种单体和交联器来增强其性能来修饰。研究探索了将水凝胶与纳米颗粒(例如磁性颗粒)融合在一起,以创建磁性生物传感和药物输送中的二凝胶。将碳纳米管(CNT)掺入带有镍纳米颗粒的聚丙烯酰胺(PAM)水凝胶中,可显着提高磁敏感性,强度和耐磨性。cnts将磁矩提高了85%,磁性增强,并且由于其与镍纳米颗粒的润滑性和协同作用,使磨损降低了40%。但是,传统的PAM水凝胶在机械强度和抗穿刺性方面面临挑战。为了解决这个问题,使用氧化钛(TiO2)和CNT分别和组合来提高PAM水凝胶的强度。PAM-TIO2-CNT复合材料表现出增强的抗压强度,弹性模量和刺激性。它还表现出自我修复的特性,生物活性和高细胞相容性,细胞活力约为99%。此外,为骨科应用开发了羟基磷灰石(HAP)复合涂料。制造了三个HAP复合材料(HAP + CNT,HAP + GRO和HAP + HBN),并以耐磨性,机械强度,亲水性和细胞毒性为特征。在其中,HAP + HBN复合材料表现出骨植入物的最佳特性,由于HBN的协同作用,具有提高的耐磨性,机械强度和亲水性。总体而言,将CNT和TIO2等纳米颗粒掺入水凝胶和HAP复合材料中代表了生物医学应用的材料特性的显着进步,包括软骨修复和骨骼植入物。这些肌肉骨骼修复纳米复合材料提供了增强的性能和耐用性,为改善组织再生和骨科修复的临床结果铺平了道路。关于扬声器Jeet Kumar Gaur是一名综合博士生,在IISC机械工程部的M S BOBJI(FM)实验室工作。用于表征的各种技术从从VSM获得的磁性磁滞图(振动样品磁力测定法)上磨损速率计算。在他的博士学位工作中,他与碱基合成并研究了纳米复合材料,作为有机聚合物(聚丙烯酰胺)和陶瓷(羟基磷灰石),用于磁性生物传感和肌肉骨骼修复应用。虽然聚丙烯酰胺纳米复合材料可用于软组织(例如软骨)替代品,但基于羟基磷灰石的纳米复合材料对于诸如骨置换涂料材料之类的硬组织可行。