摘要和证据分析:根据美国神经病学学会(MEG)(MEG)(2009)磁脑电图(MEG),也称为磁源成像(MSI)是对脑活动产生的磁场的无创测量。典型的MEG记录是使用具有100到300磁力计或梯度计(传感器)的设备在磁性屏蔽室内进行的。它们被排列在一个名为Dewar的头盔形式的容器中。露水充满了产生超导性的液态氦气。产生磁场图的大脑源可以很容易地映射并显示在核监管MRI上。这会导致视觉显示正常的大脑活动,例如雄辩的皮层用于视觉,触摸,运动或语言的位置。它显示出同样良好的脑活动异常,例如癫痫病
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
核技术系应用工程,福岛技术学院Mishima Fumito 3-6-1 Gakuen,福岛市,910-8505电子邮件:f-mishim@fukui-ut.ac.jp
1 1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。 3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w. ); suonhockng@swin.edu.au(S.H.N. ); sjuodkazis@swin.edu.au(S.J.)1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w.); suonhockng@swin.edu.au(S.H.N.); sjuodkazis@swin.edu.au(S.J.)
自 20 世纪 90 年代末以来,视觉诱发场 (VEF) 已在临床实践中得到可靠应用。这是定制枕叶皮质手术切除术的标准临床工具。1 2011 年,美国临床脑磁图学会 (ACMEGS) 发布了临床实践指南 (CPG),详细介绍了自发性脑活动分析、使用诱发场进行术前功能性脑映射、脑磁图 (MEG) 报告以及 MEG 人员的资质。 2 – 5 最近,ACMEGS 发表了第二份立场声明,详细说明了 MEG 作为一种非侵入性诊断工具在术前映射功能皮质中的价值,并支持“在对准备手术的可手术病变患者进行术前评估时,MEG 可常规临床用于获取有关功能皮质(体感、运动、视觉、听觉和语言)的非侵入性定位或侧向信息。” 6 尽管映射功能皮质的“黄金标准”是通过直接皮质刺激,但 MEG 作为一种非侵入性诊断工具已证实其在识别这些区域方面的有效性。1 – 3,6 本文将重点介绍 MEG 在定位功能视觉皮层中的实用性。本文将首先概述 VEF 在临床实践中的当前临床作用。然后,将回顾 2011 年 ACMEGS CPG 发布后的最新研究和临床发展。最后,
脑机接口( brain-computer interface , BCI )是在大脑与外部设备之间建立直 接交互的通信和控制通道。行业起步最早可追溯至 1924 年,经历了前期 的理论探索期、科学论证期,目前已进入成果落地时期。脑机接口最早在 20 世纪未提出,目的是帮助残疾人重新行走或支配上肢,技术发展至今已 更能应用于正常人的生活和生产。随着脑机接口、人工智能、生物医学工 程、神经工程与康复工程、认知神经科学与心理科学等的发展, BCI 的内 涵和外延在不断丰富。近年来,脑机接口技术在医疗领域不断取得新成果, 尤其在临床康复领域,目前以脑功能评估为目的的脑机交互检测,以解码 交流与设备控制为目的的脑机接口应用,以功能重塑康复为目的的脑机训 练反馈等领域的探索及应用越来越深入。随着技术的应用领域不断拓宽, 未来将逐步应用于游戏娱乐、学习教育、智能家居和军事领域。
[1] 韩雪 , 阮梅花 , 王慧媛 , 等 . 神经科学和类脑人工智能发 展 : 机遇与挑战 . 生命科学 , 2016, 28: 1295-307 [2] Ngai J. BRAIN 2.0: transforming neuroscience. Cell, 2022, 185: 4-8 [3] Mehonic A, Kenyon AJ. Brain-inspired computing needs a master plan. Nature, 2022, 604: 255-60 [4] European Brain Research Area. European Research Inventory and Mapping Report[EB/OL]. (2022-02-15) [2023-01-09].https://www.neurodegenerationresearch. eu/2022/02/ebra-releases-mapping-report-investment- in-european-brain-research-still-vital/ [5] Canadian Brain Research Strategy. Brain Research Must Be a National Priority for the Social, Health, and Economic Advancement of Canada[EB/OL]. (2022-10- 07)[2023-01-09]. https://www.ourcommons.ca/Content/ Committee/441/FINA/Brief/BR11979145/br-external/ CanadianBrainResearchStrategy-e.pdf [6] Canadian Brain Research Strategy. Recruitment for CBRS Indigenous Engagement Sessions[EB/OL].(2022-09-20) [2023-01-09]. https://canadianbrain.ca/recruitment-for- indigenous-engagement-sessions/ [7] Brain/MINDS Beyond expands to the international project for primate brain connectome[EB/OL]. (2022-09-30) [2023-01-09]. https://brainminds-beyond.jp/news/2022/ 09/post_21.html [8] Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain. Science, 2022, 378: 505-10 [9] Axer M, Amunts K. Scale matters: the nested human connectome. Science, 2022, 378: 500-4
脑电反馈是一种基于脑电图技术的无创脑刺激方法,通过脑机接口将脑电生理活动信号传送到计算机,将脑电活动的实时变化作为反馈刺激给予被试自身,帮助被试学习如何自我调节大脑活动。脑电反馈应用十分广泛,可作为精神疾病的辅助治疗、健康个体的认知能力提高以及作为脑电生理特征与认知功能相互作用的实验条件。为了对脑电反馈有一个清晰的认识,本文从脑电反馈系统的组成部分、脑电反馈方案的设计要素、脑电反馈的评价以及脑电反馈的机制理论四个部分对其进行了综述。
https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)
脑机接口作为大脑和外部设备信息交互的渠 道 , 是前沿脑科学和重要脑疾病诊治的底层核心 工具 . 脑机接口是生物技术和信息技术交叉融合 的颠覆性技术 , 其技术研发和落地应用是一个复 杂的系统工程 , 包括神经电极、芯片、算法、通讯、 植入等核心器件和关键技术 , 涵盖微电子、神经 科学、材料学、计算机科学、临床医学、伦理学 等多学科交叉 . 因此 , SCIENCE CHINA Informa-
