患者数据记录室。 用于患者数据存储的 HP 服务器。 用于 MEG 采集室的 UPS 备份。 男女病房(每个病房 3 张床)均配备基本医疗设备。 专用计算机工作站,配备用于患者数据分析的软件。
脑磁图 (MEG) 是一种尖端的神经成像技术,它以无与伦比的高时间和空间精度组合测量认知过程背后的复杂大脑动态。MEG 数据分析始终依赖于先进的信号处理以及数学和统计工具来完成各种任务,从数据清理到探测信号的丰富动态,再到估计表面级记录背后的神经源。与大多数领域一样,人工智能 (AI) 的激增导致机器学习 (ML) 方法在 MEG 数据分类中的使用增加。最近,该领域的一个新兴趋势是使用人工神经网络 (ANN) 来解决许多与 MEG 相关的任务。本综述从三个角度全面概述了 ANN 如何用于 MEG 数据:首先,我们回顾了使用 ANN 进行 MEG 信号分类(即大脑解码)的工作。其次,我们报告了使用 ANN 作为人脑信息处理的假定模型的工作。最后,我们研究了使用 ANN 作为解决 MEG 方法问题(包括伪影校正和源估计)的技术的研究。此外,我们评估了目前在 MEG 中使用 ANN 的优势和局限性,并讨论了该领域未来的挑战和机遇。最后,通过详细描绘该领域并为未来提供实用建议,本综述旨在为经验丰富的 MEG 研究人员和对该领域有兴趣使用 ANN 来增强对 MEG 人脑复杂动态的探索的新手提供有益的参考。
主题:至少30人。男人和女人对情绪的反应不同,分开情感识别或将性别比设置为1:1。刺激:使用标准刺激集。,例如IAP(国际情感图片系统),Gaped(日内瓦情感图片数据库),IAD(国际情感数字声音)等。情感:悲伤,幸福,愤怒,恐惧,喜悦,惊喜,厌恶,中立等。
21世纪被称为“脑研究世纪”,随着脑科学和认知科学的发展,人脑与计算机之间的界限逐渐被打破,出现了一种新型的智能设备——脑机接口。这是一种基于大脑神经活动的新型通信方式,可以实现人脑与计算机之间的直接通信。本文综述了脑机接口的发展历程、目前的技术研究进展以及未来的发展预测。
摘要:终身学习、个性化学习理念的日益深入人心,以及对有效、价格合理的自动化学习系统的需求,推动和促进了脑机接口(BCI)在教育领域的应用。但作为智能教学技术的代表,BCI的应用仍处于非主流,在理论基础、技术装备、制度保障等方面存在诸多障碍。本研究从技术原理、应用潜力、应用障碍三个方面阐述了BCI在教育领域的优势与不足。虽然在线教学为BCI在教育领域的应用提供了新的机会,但其在改变主流教学方式方面的作用有限。若能将二者有机结合、相互补充,将对提高学生的学习积极性、提高学习效率大有裨益,成为BCI等非主流技术在后疫情时代的有效生存之道。
前言 ...................................................................................................................................................................................I
甘 迪,黄 辉,李承智,等 .脑机接口对义指精细动作控制的研究进展 [ J ] .中国临床医学 , 2025, 32(1): 114-119.GAN D, HUANG H, LI C Z, et al.Advances in research on fine motion control of prosthesis fingers with brain-computer interface [ J ] .Chin J Clin Med, 2025, 32(1): 114-119.DOI: 10.12025/j.issn.1008-6358.2025.20241119
接口技术[j]。信号处理期刊,2023年,39 (8):1386-1398。doi:10。16798/j。ISSN。 1003-0530。 2023。ISSN。1003-0530。2023。
Auto-Mag® DNA 片段分选纯化回收试剂(磁珠法)是一款基于顺磁珠技术开发的高性能试剂,专为满足 下一代测序 (NGS) 文库构建中的 PCR 产物、DNA 片段和 RNA 的纯化需求而设计,同时支持 DNA 片段的大 小分选与高效回收。在 PCR 产物纯化方面,该试剂提供了单管和 96/384 孔板两种灵活格式,通过优化的缓 冲液选择性地结合 >100 bp 的 PCR 扩增产物,利用简便的清洗步骤去除多余引物、核苷酸、盐和酶,最终 使用低盐洗脱缓冲液或水进行温和高效的洗脱。在 DNA 片段大小分选中,用户可通过调整试剂与 DNA 样 本的体积比,精准选择目标 DNA 片段范围,并通过结合、洗涤和洗脱的简单操作回收分布均匀、符合实验 需求的目标 DNA 片段。