3D元素掺杂剂。因此,由于存在无量化边缘状态而导致的量子反转对称性可能会导致量子异常效应(qahe)的检测。[10–12]预计此类设备与常规超导体的组合可以容纳Majorana Fermions,这些设备适用于用于拓扑量子计算机的编织设备。[13,14]由于真实材料的频带结构很复杂,因此在较高温度下实现Qahe或Majoraana fermions是一项挑战。需要高度精确的频带结构工程来有效抑制散装带的贡献。迄今为止,这构成了基于Qahe开发实用设备的主要限制障碍之一。因此,不可避免的是对TI的频带结构的更深入的了解。shubnikov – de Hass(SDH)振荡是一种通常在干净的金属中观察到的量子相干性,其中电荷载体可以在没有杂志的网络下完成至少一个完全的回旋运动而无需杂物散射。[15]可以从振荡期和温度依赖性振幅变化中提取诸如费米表面拓扑和无均值路径之类的财富参数。[16]量子振荡已被广泛用作研究高温超导体和拓扑材料的工具。[17–20]最近观察到ZRTE 5中三维(3D)量子霍尔效应(QHE)的观察吸引了进一步的热情研究ti Mate的量子振荡。[24,27]但是,未观察到远程FM顺序。[21]在二进制化合物,BI 2 SE 3,BI 2 TE 3和SB 2 TE 3散装晶体和薄片中观察到了量子振荡。[22–25]在这些系统中,振荡起源于表面状态或散装带,具体取决于化学电位的位置。[26]最近,在掺杂的Ti单晶的3D元素中发现了量子振荡,例如Fe掺杂的SB 2 TE 3和V掺杂(BI,SN,SB)2(TE,S)3。结果促使制备相似材料的薄膜,并具有与高迁移率拓扑表面状态共存的FM顺序的潜力。到目前为止,据我们所知,只有少数报道观察到磁掺杂的TI中的量子振荡,例如V型(BI,SB)2 TE 3,Sm-Doped Bi 2 Se 3。[28,29]但是,
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计
本研究はJSPS 科研费(JP 21H05021, JP 17H06227)、JST CREST(JPMJCR18J1)、JST SICORP
“太空科学”是一个涵盖地球观测和与空间相关的科学研究的伞。地球观测(EO)卫星使用独特的有利位点可见光或无线电谱观察地球及其大气。它提供的信息用于广泛的目的,包括天气预报,环境监测,气候变化研究以及许多商业活动。射电天文学和空间研究有助于我们对空间的了解和宇宙的发展。以下服务属于此类别:
时间:16.10.2024,下午5点,地点:IGZW,Gregor-Mendel-STR。4 3层会议室门在下午4:45开放免费啤酒,饮料和小吃!!
探测DNA复制动力学的主要方法是DNA纤维分析,该分析利用胸苷类似物掺入新生的DNA中,然后将DNA纤维的免疫荧光显微镜检查。除了耗时且容易出现实验者偏见外,它不适用于研究线粒体或细菌中的DNA复制动力学,也不适合进行高通量分析。在这里,我们介绍了质谱 - 基于新生DNA(MS波段)的分析,作为DNA纤维分析的快速,无偏,定量的替代方案。在这种方法中,使用三重四极尖串联质谱法对胸苷类似物的结合进行定量。MS波段准确地检测到人类细胞的细胞核和线粒体以及细菌的DNA复制改变。在大肠杆菌DNA损伤诱导基因库中捕获的MS-BAND捕获的复制改变的高通量能力。因此,MS波段可以作为DNA纤维技术的替代方案,并具有对不同模型系统中复制动力学的高通量分析的潜力。
蛋白质组学的发展。13,14 人们希望开发超灵敏、经济高效且简单的表征技术来获得生理环境中的天然和内在蛋白质结构。在不同的技术中,光学方法是实现这一目标最有效的方法之一。表面增强拉曼光谱 (SERS) 已被接受为蛋白质组学中一种很有前途的工具,因为它能够以非侵入性方式提供指纹信息并具有单分子灵敏度。15,16 1980 年,Cotton 等人利用表面增强共振拉曼散射检测细胞色素 C (Cyt C) 和肌红蛋白,为 SERS 在蛋白质检测中的应用打开了大门。 17 事实上,SERS 信号主要由辅因子(例如卟啉和阿维腺嘌呤二核苷酸)决定,因为它们具有较大的拉曼截面,并且在适当的入射光下具有共振效应。18