在过去十年中,随着微电子技术的不断进步,人们开发出多种新技术,以新的方式收集心电图记录,这些方式通常是在医疗机构之外。首先,有许多设备利用几个标准心电图电极或佩戴在胸部的贴片状电极,连续记录一个或两个导联长达数周。这些设备可以捕获患者激活的记录,也可以捕获内置算法检测到异常心律或传导异常时的记录。一些设备只是存储数据以供后续检索,而其他设备则使用蜂窝设备将事件记录实时传输到监测站。最后,还有可植入设备,可以连续监测心律,捕获和存储心律失常事件的记录,并可让医生下载数据。
全球市长盟约全球气候与能源市长盟约(GCOM)是城市气候领导力最大的全球联盟,与13,000多个城市和地方政府和100多个支持合作伙伴团结了全球联盟。GCOM的城市和合作伙伴具有支持自愿行动以打击气候变化以及朝着韧性和低排放社会的长期愿景。GCOM通过与城市/地区/地区网络,国家政府和其他合作伙伴合作来实现我们的愿景,通过动员和支持其社区中雄心勃勃,可衡量,计划的气候和能源行动来为城市和地方政府提供服务。联盟包括6大洲和144个国家的城市,占全球人口的10亿以上人口。
背景:一名72岁的男性在中风后六个月遭受吞咽困难和左侧弱点,在食用液体和软食物期间遇到了诸如咳嗽和窒息的挑战,以及长时间的用餐过程。双侧血栓性梗塞和左侧侧面化。案例:Gugging吞咽筛查量表(GUSS)评估表现出严重的损害,总得分为7,尽管传统的物理治疗试图改善吞咽功能,但仍持续存在。随后,实施了重复的经颅磁刺激(RTMS),涉及在对比半球中ipsilesiles hemisphere中的高强度刺激和低强度刺激。值得注意的是,在RTMS后一个月,患者表现出了重大进展,这表明了15分的进度,表明吞咽功能增强。讨论:此案强调了双侧RTMS半球刺激对冲刺后吞咽困难的积极影响。高强度的iPsiles和低强度对比刺激的战略应用是减轻吞咽困难的有效干预措施。这些发现突出了RTM作为中风后持续性吞咽困难的创新治疗方法的潜力。关键字:吞咽困难,刺激后,刺激,TMS,经颅磁刺激
图1。您选择的磁珠会影响您的结果。dynabeads磁珠具有定义的表面以进行必要的结合,而没有内部表面可以捕获不需要的蛋白质。(a)Dynabeads产品是具有高度控制的产品质量制造的最均匀,单分散的超级磁珠,可帮助确保最高的可重复性。(b – d)替代供应商的磁性颗粒具有可变的形状和尺寸,可捕获杂质,从而导致较低的可重复性和增加的非特异性结合。
(1) MP Bendsøe 和 N. Kikuchi,“使用均质化方法在结构设计中生成最佳拓扑”,Comp. Methods in Appl. Mech. Eng.,第 71 卷,第 197-224 页,1988 年。 (2) MP Bendsøe 和 O. Sigmund,拓扑优化,理论、方法和应用,Springer,2004 年。 (3) Hidenori Sasaki 和 Hajime Igarashi,“使用傅里叶级数对 IPM 电机进行拓扑优化”,Journal of Electrical Engineering (B),第 137 卷,第 3 期,第 245-253 页,2017 年 3 月。 (4) Y. Tsuji 和 K. Hirayama,“使用基于函数扩展的折射率分布的拓扑优化方法设计光路设备”,IEEE Photonics Technol. Lett., (5) T. Sato、H. Igarashi、S. Takahashi、S. Uchiyama、K. Matsuo 和 D. Matsuhashi,“使用拓扑优化实现内置永磁同步电机转子形状优化”,《电气工程杂志 (D)》,第 135 卷,第 3 期,第 291-298 页,2015 年 3 月。 (6) S. Kobayashi,“实数编码 GA 的前沿”,《人工智能杂志》,第 24 卷,第 1 期,第 147-162 页,2009 年 1 月。 (7) T. Sato、K. Watanabe 和 H. Igarashi,“基于正则化高斯网络的电机多材料拓扑优化”,《IEEE 会刊》, (8) S. Hiruma、M. Ohtani、S. Soma、Y. Kubota 和 H. Igarashi,“参数和拓扑优化的新型混合:应用于永磁电机,”IEEE Trans. Magn.,第 57 卷,第 7 期,8204604,2021 年 (9) Y. Otomo 和 H. Igarashi,“用于无线电源传输设备的磁芯 3-D 拓扑优化,”IEEE Trans. Magn.,第 55 卷,第 6 期,8103005,2019 年。 (10) K. Itoh、H. Nakajima、H. Matsuda、M. Tanaka 和 H. Igarashi,“使用带归一化高斯网络的拓扑优化开发用于缝隙天线的小型介电透镜,”IEICE Trans. Electron., E101-C 卷,第 10 期,第 784-790 页,2018 年 10 月。 (11) N. Hansen、SD Müller 和 P. Koumoutsakos,“通过协方差矩阵自适应降低去随机化进化策略的时间复杂度(CMA-ES),”进化计算,第 11 卷,第 1 期,第 1-18 页,2003 年。 (12) N. Aage、E. Andreassen、BS Lazarov 和 O. Sigmund,“用于结构设计的千兆体素计算形态发生”,自然,第 550 卷,23911,2017 年。