摘要 - HL-LHC IT字符串是HL-LHC Inner Triplet(IT)区域的主要组成部分的集成测试架,在CERN的表面建筑物中处于其构造阶段。主要动机是研究和验证不同系统的集体行为:磁铁,电路保护,磁铁的低温和超导连接,磁铁供电,真空,对准和磁铁和超级通用链接之间的互连。在过去的两年中,主要重点一直放在技术基础架构定义和实施上,同时准备了主要要素的安装序列和程序。字符串验证程序(SVP)已与HL-LHC工作包达成协议,允许设置联合和优化的测试程序并将其集成在时间表中。在本文中,我们描述了IT字符串的安装,并描述了主要差异betweenthehl-lhcitstringandthefuturehl-lhc计算机。将提出测试程序的主线和整个热周期的动机,并提出成本收益分析。
•Fermilab正在从伊利诺伊大学获取盈余实验性MRI磁铁,在800毫米的室温孔中提供9.4 t领域,目的是将磁铁用作高频实验的基础,目前是在Doe Dark Matter New Initiative New Initiative Program
DC-4811 型号提供了一种有效且方便的方法来固定包含滚轮运输机制的面板式卷帘门。包含可调节的 L 型支架,可安装至宽度达 3 英寸的滚轮轨道。。为了获得最高级别的安全性,请将开关安装在轨道上安装的任何其他设备下方,同时仍要足够高以使电缆远离地板表面。将磁铁安装在门上,使门处于关闭状态时,开关和磁铁之间有 1/4 英寸的间隙。避免将磁铁放置在靠近手柄和/或闩锁的位置,以防止将其用作立足点或其他类型的门关闭配件。
护理部正在前往磁铁之旅 - 寻求对我们每天提供护理人员提供的高质量护理验证。磁铁是医院和社区的重要指定,因为它表明该中心已经达到或超过了严格的患者护理标准。罗斯威尔公园(Roswell Park)的护士在许多方面都脱颖而出,包括在护理敏感指标和患者满意度分数的许多元素上超越我们的同伴组。与其他专业,磁铁和教学组织相比,我们护理假的患者受伤和感染较少。当我们做得更好时,我们的患者就会获胜。他们获得应有的最佳患者护理。
什么是 fMRI?MRI:MRI 或磁共振成像是一种观察身体内部以获得清晰解剖结构图像的方法。它通常用于检测疾病或异常情况。MRI 不依赖于用于 X 射线或计算机断层扫描 (CT) 扫描的辐射类型。MRI 扫描需要使用强大磁场以及快速变化的局部磁场、射频能量和强大计算机的专门设备来生成非常清晰的身体内部结构图像。MRI 安全吗?迄今为止,已有超过 1.5 亿患者接受了 MRI 程序。事实证明,只要采取适当的预防措施,MRI 对成人、儿童和婴儿都非常安全。一般来说,MRI 程序不会产生疼痛,也不会造成任何类型的短期或长期组织损伤。必须采取预防措施以确保没有金属进入扫描区域:扫描仪的强力磁铁可以吸引某些被称为“铁磁性”物体的金属物体,导致它们突然向磁铁中心移动。这对磁铁内部的任何人来说都是危险的。因此,当在磁铁附近时,所有人员都必须通过金属探测器才能进入。这和仔细的筛查可以防止任何金属物体进入磁铁区域。参与者进入的 MRI“孔”或管道很小,因此某些幽闭恐惧症患者可能会感到不舒服。我们不会对任何报告幽闭恐惧症的人进行扫描。
HPH 使用大振幅哨声器(即低于电子回旋频率的电磁波)产生能量为几十 eV(10-30 km/s,取决于推进剂选择)的等离子流。哨声器由固态开关电路以几十 kW 的功率驱动。直流线圈磁铁有助于哨声器的产生,额外的磁铁可使等离子体聚焦。
*1. B OPN 、B OPS :动作点 B OPN 及 B OPS 是增加(将磁铁靠近)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度超过 B OPN 或 B OPS ,V OUT 仍会保持该状态。 *2. B RPN 、B RPS :解除点 B RPN 及 B RPS 是减少(将磁铁远离)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度低于 B RPN 或 B RPS ,V OUT 仍会保持该状态。 *3. B HYSN 、B HYSS :滞后宽度 B HYSN 及 B HYSS 分别是 B OPN 与 B RPN 、B OPS 与 B RPS 之差。备注 磁密度单位mT可以用公式1 mT = 10高斯进行换算。
NXP 的 KMI 系列磁阻 (MR) 转速传感器为所有应用提供了解决方案。它们是专为满足汽车系统需求而设计的,是完整的即用型模块,包括传感器、反向偏置磁铁和高级信号调节 IC。这些设备具有最大的设计灵活性,可选择输出信号和单独磁化的反向偏置磁铁。
在这项研究中研究了过渡金属对铁素(铁(III)氧化物)化合物的影响。铁氧体样品。X射线分析在三价状态下揭示了Fe期的存在,展示了一个基于(311)反射平面的首选方向的单杆立方尖晶石框架。对于CDFE 3 O 4,Znfe 3 O 4的晶体尺寸,使用Scherer方程的COFE 3 O 4分别得出10.54 nm,18.76 nm和32.63 nm的值。锌铁酸盐与钴和铁氧体相比表现出中间光子性质,镉铁素体的光损失高光损失,钴铁液表现出最小的光学损失。EDX分析证实了Zn 2 +,CO 2 +,Fe 3 +,Cd 2 +和O 2-离子的存在,以支持预期的stoichio-量组成。光学评估表明,COFE 3 O 4纳米颗粒非常适合光电设备,紫外检测器和红外(IR)检测器。与其他样品相比,钴铁素体的VSM测量值比其他样品表现出更高的牢固性和磁饱和度。光致发光(PL)光谱显示出多种颜色,包括青色,绿色和黄色,在铁素体样品的不同波长下。这些发现表明合成样品是由于其可靠的磁性特性而用于高频设备的合适材料。镉铁氧体显示出多磁性结构域的结构,与在锌和钴铁岩中观察到的单磁体结构结构形成对比。
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。