此ASX版本中的材料不是也不构成要约,邀请或建议,以订阅或购买汉考克,传统铁矿石有限公司(LCY)或Hawthorn Resources Limited(HAW)的任何安全性,也不构成任何合同或承诺的基础。Hancock,LCY和HAW的每个人都不会对本材料的准确性,可靠性或完整性表示明示或暗示的代表或保修。Hancock,LCY和HAW,其董事,雇员,代理人和顾问不承担任何责任,包括因疏忽或疏忽误解的原因对任何人的责任,对于任何陈述,意见,信息或事项,明示或暗示的任何陈述,明示或暗示,在此材料中,或不在该材料中的任何遗漏中所包含的,或者不在该材料中,该材料的含义除外,以外的陈述。
等。2014)。也是,Cr(VI)主要存在为HCRO 4-和Cr 2 O 7 2- pH时为2.0至6.4,CRO 4 2- pH> 6.4 235
摘要:矿产资源和能源部估计,工业部门是南非最大的能源消耗部门。工业中约 66% 的能源最终用途用于制造过程中的供热。南非工业以前是在煤炭和电力能源价格低廉的背景下发展起来的。这导致了大量低效且碳密集的工业流程。随着燃料价格上涨、化石燃料枯竭的前景以及全球不断努力减少环境影响,有必要开发用于供热的替代能源。相当一部分热能可以通过太阳能技术产生。然而,太阳能供应本质上是可变的,并不总是与需求相匹配。因此,有必要将热能存储系统集成到太阳能发电厂中以确保可用性。热能可以通过三种主要方式储存,即显热、潜热和热化学热形式。磁铁矿是一种在 ~570°C 时发生反铁磁相变的材料。这会导致材料热容量可逆性飙升。这对于热能存储应用非常有利,使其能够比其他典型的显热存储介质存储更多的热量。磁铁矿在南非随处可见,通常是其他生产过程的废品。开发了一个实验室规模的原型,以分析磁铁矿在以空气为工作流体的开放(非加压)系统中的热存储特性。磁铁矿在填料床反应器中使用燃气燃烧器加热,并使用环境空气排放。磁铁矿能够储存高达 1000 o C 的热量,这使其适用于 CSP 工厂。实验结果将用于验证 CFD 模型,为未来的 CSP 工厂设计和工业过程加热应用提供参考。
理解磁铁矿 (Fe3O4) — 一种强关联磁性氧化物 — 中的 Verwey 跃迁是一个百年老话题,由于最近的光谱研究揭示了它的轨道细节,它重新引起了人们的极大关注。这里报道了通过使用离子门控调整轨道配置来调制 Verwey 跃迁。在外延磁铁矿薄膜中,绝缘的 Verwey 态可以连续调整为金属态,表明低温三聚体态可以通过栅极诱导的氧空位和质子掺杂可控地金属化。离子门控还可以反转异常霍尔系数的符号,这表明金属化与具有竞争自旋的新型载流子的存在有关。与符号反转相关的可变自旋取向源于栅极诱导的氧空位驱动的结构扭曲。
摘要本研究论文阐述了米歇尔·沃尔登(Michel K. Walden)在现代工程实践中的磁铁矿引擎的变革潜力。磁铁矿发动机引入了推进技术的范式转变,与传统燃烧引擎相比,效率和性能的大幅提高。这项研究利用全面的文献综述和案例研究来评估磁铁矿发动机与其主张的一致性的理论基础,设计原理和实际应用。主要目的是评估发动机对汽车和航空航天行业等部门的潜在影响。虽然磁铁矿发动机承诺诸如减少排放和提高能源效率之类的好处,但它也面临着挑战,包括生产规模和与现有基础设施的整合。本文提出了未来的研究方向,以充分探索磁铁矿引擎在推进可持续工程解决方案方面的潜力。关键字 - 磁铁矿发动机,米歇尔·沃尔登(Michel K.推进系统变得更加紧迫。Michel K. Walden的磁铁矿发动机提出了一种新型的能量转换和推进的方法,利用磁铁矿,一种天然存在的磁性矿物。对纳米材料的研究表明,热和磁性本文深入研究了理论基础,技术规格以及磁铁发动机在解决这些关键问题方面的潜在好处。理论基础,磁铁矿发动机基于磁流失动力学原理(MHD),该原理涉及将磁铁矿纳米颗粒悬浮在导电液中。暴露于磁场和加热后,这种流体电离会产生电力并向前推动发动机。Walden的研究强调了Magnitite的磁反应能力和热稳定性,这是使其成为该技术的合适候选者的关键因素。纳米技术和材料科学的最新进展进一步支持了磁铁矿发动机的可行性。
摘要:到目前为止,用于治疗癌症的策略是不完美的,这产生了寻找更好,更安全的解决方案的需求。最大的问题是与肿瘤细胞缺乏选择性相互作用,这与副作用的发生有关,并显着降低了疗法的有效性。在癌症中使用纳米颗粒可以抵消这些问题。最有希望的纳米颗粒之一是磁铁矿。实施该纳米颗粒可以改善各种治疗方法,例如高温,靶向药物递送,癌症基因疗法和蛋白质治疗。在第一种情况下,其特征使磁铁矿在磁性高温中有用。磁铁矿与改变的磁场的相互作用会产生热量。此过程仅在患者体的所需部分中导致温度升高。在其他疗法中,基于磁铁矿的纳米颗粒可以作为各种治疗载荷的载体。磁场会将与药物相关的磁铁矿纳米颗粒引导到病理部位。因此,该材料可用于蛋白质和基因治疗或药物递送。由于磁铁矿纳米颗粒可用于各种类型的癌症治疗,因此对它们进行了广泛的研究。在此,我们总结了有关磁铁矿纳米颗粒的适用性的最新发现,还解决了智能纳米医学在肿瘤学疗法中面临的最关键问题。
1马来西亚登龙加州海洋科学与环境学院,21030吉隆坡,马来西亚孟生部孟生部2号,马来西亚2化学科学系,科学与技术系,马来西亚43600 UKM BANGI,MALAYSIA 33600 MALAYSIA 33600 MALAYSIA 33600 MALAYSIA MALAYS MALAYS IKIAL SCICOCYIA,ICTILTICIA,INFORITIAL SCICOCHIA,INFORITIA,INSCICEN,INSCICIA,INCUSICIA,INCUSICIA,INSCICEN,INCUSICIE,INCUSICIE,INCUSICITY 33 Skudai,Johor,Malays IA *通讯作者:Farhanini@umt.edu.my收到:2024年8月13日;修订:2024年11月17日;接受:2024年11月18日;发表:2025年2月10日,本研究在无情追求清洁能源的突破性进步中摘要,推出了一种电催化剂,它还原了与磁铁矿纳米颗粒(RGO-MNP)集成的氧化石墨烯(RGO-MNP),该氧化石化是为了彻底改变氧气减少反应(ORR)。通过复杂的密度函数理论(DFT)模拟,我们演示了MNP与RGO的杂交如何导致电子性能的深刻修改,从而解锁了催化活性和电子转运的前所未有的增强。复合材料表现出非常稳定的稳定性,这是由-1036.96 kJ/mol的结合能证明的,而其相互作用能为-389.29 kJ/mol,信号是热力学上有利的结构。分子静电电势(MEP)映射揭示了电子致密和不足区域的丰富相互作用,对于优化ORR机制至关重要。此外,0.173 eV的狭窄homo-lumo间隙强调了材料的高反应性和最佳电荷转移动力学。这项工作为开发高效,耐用和可扩展的ORR催化剂建立了强大的基础,为在燃料电池和清洁能源系统中有影响力的应用开辟了途径。这些计算见解肯定了RGO-MNP作为下一代电催化剂,不仅提供了出色的稳定性和效率,而且还具有推动可持续能源技术变革性改进的潜力。关键词:还原反应,氧化石墨烯,磁铁矿纳米颗粒,密度功能理论,电催化剂简介当前的发电系统在满足对清洁和可靠功率的增长需求方面面临重大挑战[1,2]。化石燃料是一致的电力来源,但昂贵。但是,目前的问题不一定是缺乏化石燃料,而是与他们继续使用电力相关的环境和经济负担[3,4,5]。燃料电池是一种可持续且具有成本竞争力的替代方案,可以满足我们不断增长的能源需求[1,2,4,6,7]。还原反应(ORR)是燃料电池等设备中电化学转化的基石[1,7,8]。它们代表了将燃料中存储的化学能转化为可用的电能的过程的核心。一个ORR涉及两个同时的过程:氧化
摘要:本研究旨在开发一种新型载5-氟尿嘧啶(5-FU)磁铁矿膨润土纳米载体,用于靶向抗癌药物输送,以获得最有利的治疗反应,并提供有效和安全的体外抗癌治疗。通过静电相互作用反应将氧化铁在膨润土中功能化,形成磁铁矿膨润土纳米粒子。生物素的靶向配体与谷胱甘肽的交联剂结合,在磁铁矿膨润土中形成生物素化的谷胱甘肽。利用不同的分析技术对合成的纳米载体体系进行表征。根据Scherrer方程,载体和载5-FU的载体的平均粒径为31nm。在SEM分析中,载5-FU和未载5-FU的载体分别形成片状和针状和花状结构。磁铁矿膨润土纳米载体中的5-氟尿嘧啶的负载量为59.0%,包封率为72.13%。研究了载有 5-FU 的纳米载体在肺癌细胞 (A549) 中的体外细胞毒性作用。合成的载有 5-FU 的纳米载体在肺癌 A549 细胞中表现出细胞毒性和细胞凋亡增加。因此,结果表明,载有 5-FU 的磁铁矿膨润土具有强大的体外抗癌和抗氧化活性,可作为肺癌治疗的潜在药物载体。
仙贡木(Falcataria moluccana)是印度尼西亚人工林中占主导地位的速生木材之一。需要利用磁铁矿纳米粒子来改善和扩大仙贡木的质量和利用率。该研究旨在研究磁铁矿纳米粒子浸渍处理对仙贡木物理和磁性能的影响。采用共沉淀法以铁离子混合物和弱碱(NH 4 OH)的前体溶液制备磁铁矿纳米粒子。处理包括未处理、1% 和 5% 磁铁矿纳米粒子。重量百分比增益 (WPG)、膨胀效果 (BE)、抗膨胀效率 (ASE) 和密度随着浓度的增加而趋于增加。方差分析表明,处理显著影响处理过的仙贡木的 WPG、BE、ASE 和密度。扫描电子显微镜和能量色散 X 射线光谱分析表明木材细胞膜中有 Fe 沉积。 X射线衍射分析发现,随着结晶度的降低和浓度的增加,衍射图上出现了磁性峰。此外,傅里叶变换红外光谱分析揭示了Fe-O功能基团。基于振动样品磁强计研究,Sengon磁木被归类为具有温和磁性的超顺磁性材料。