(1) MP Bendsøe 和 N. Kikuchi,“使用均质化方法在结构设计中生成最佳拓扑”,Comp. Methods in Appl. Mech. Eng.,第 71 卷,第 197-224 页,1988 年。 (2) MP Bendsøe 和 O. Sigmund,拓扑优化,理论、方法和应用,Springer,2004 年。 (3) Hidenori Sasaki 和 Hajime Igarashi,“使用傅里叶级数对 IPM 电机进行拓扑优化”,Journal of Electrical Engineering (B),第 137 卷,第 3 期,第 245-253 页,2017 年 3 月。 (4) Y. Tsuji 和 K. Hirayama,“使用基于函数扩展的折射率分布的拓扑优化方法设计光路设备”,IEEE Photonics Technol. Lett., (5) T. Sato、H. Igarashi、S. Takahashi、S. Uchiyama、K. Matsuo 和 D. Matsuhashi,“使用拓扑优化实现内置永磁同步电机转子形状优化”,《电气工程杂志 (D)》,第 135 卷,第 3 期,第 291-298 页,2015 年 3 月。 (6) S. Kobayashi,“实数编码 GA 的前沿”,《人工智能杂志》,第 24 卷,第 1 期,第 147-162 页,2009 年 1 月。 (7) T. Sato、K. Watanabe 和 H. Igarashi,“基于正则化高斯网络的电机多材料拓扑优化”,《IEEE 会刊》, (8) S. Hiruma、M. Ohtani、S. Soma、Y. Kubota 和 H. Igarashi,“参数和拓扑优化的新型混合:应用于永磁电机,”IEEE Trans. Magn.,第 57 卷,第 7 期,8204604,2021 年 (9) Y. Otomo 和 H. Igarashi,“用于无线电源传输设备的磁芯 3-D 拓扑优化,”IEEE Trans. Magn.,第 55 卷,第 6 期,8103005,2019 年。 (10) K. Itoh、H. Nakajima、H. Matsuda、M. Tanaka 和 H. Igarashi,“使用带归一化高斯网络的拓扑优化开发用于缝隙天线的小型介电透镜,”IEICE Trans. Electron., E101-C 卷,第 10 期,第 784-790 页,2018 年 10 月。 (11) N. Hansen、SD Müller 和 P. Koumoutsakos,“通过协方差矩阵自适应降低去随机化进化策略的时间复杂度(CMA-ES),”进化计算,第 11 卷,第 1 期,第 1-18 页,2003 年。 (12) N. Aage、E. Andreassen、BS Lazarov 和 O. Sigmund,“用于结构设计的千兆体素计算形态发生”,自然,第 550 卷,23911,2017 年。
尼泊尔的温度升高预计将高于全球平均水平。年平均温度预计到本世纪中叶的平均平均升高为2.9°C,在最高排放方案下,到本世纪末,平均范围为2.9至4.3°C,与1986 - 2005的基线周期相比。降水。尼泊尔已经在1天降水的持续时间,强度和频率以及为期5天的降水事件和预测中显着增加。短期和长期的平均年降水量可能会增加。在长期(2036-2065)中,中期(2016- 2045年)的平均年度降水可能会增加2%–6%(2016- 2045年),而年平均降水量可能会增加8%–12%。耦合模型比较项目阶段5(CIMP5)集成模型在所有排放途径下,到2080 - 2099年预计的年度干旱概率至少为10%,干旱概率的增加。河流流量:降水增加将增加平均河流流量;但是,干旱事件的频率和严重程度已经发生,这种趋势将在气候变化下继续。除拉贾普尔以外的所有副标题都由非冰川河喂养,不会受到雪和冰川融化的影响。项目组件对气候和天气状况高度敏感,包括:Rajapur的水的供应非常复杂,这条大型编织的河流的水可用性主要受到东岸流量的可用性的影响;卡纳利河盆地气候变化的长期建模表明,由于温度升高和代表性浓度途径下的降雨平均排放量(RCP)4.5将增加6.4%2046至2070和8.4%2070至2099年。
摘要:由于技术的进步,学习的各种方法学可能性在教育领域获得了动力,这成为调查的肥沃基础。在这个问题中,这项工作的指导目标出现了,因为以其核心衡量和理解与技术资源相关的神经学习的一些贡献的机会,作为教学学习过程的指标。Neuro -Learning开辟了理解认知过程的方法。首先,对与技术使用相关的神经学习的基础进行了分析,特别是在学生的形成背景下。此外,通过图像(媒体和代表)等数字资源在网络文化中如何进行教学学习的各个方面。为此,研究具有探索性特征,从方法上讲是一项定性研究,得到了书目研究的支持,作为理论支持作者,为这一研究贡献了这一研究。从书目贡献中产生的数据,通过该数据可以得出结论,与技术相关的神经学习可以帮助大量学习,但是需要仔细的计划来提供简化学习的方法。关键字:神经学习;技术;教学实践。
语义细分是计算机视觉中的核心任务,它允许AI模型交互和了解其周围环境。与人类在潜意识中的场景相似,这种能力对于场景的场景至关重要。但是,许多语义学习模型面临的挑战是缺乏数据。现有的视频数据集仅限于不代表现实示例的简短,低分辨率视频。因此,我们的关键贡献之一是徒步旅行数据集的自定义语义细分版本,其中包含来自不同城市之旅的长达一个小时,高分辨率的真实世界数据。此外,我们评估了在我们自己的自定义数据集中开放的开放式语义模型的性能,并讨论未来的含义。关键字
磁特征和方法标准收集了具有多年磁传感器经验的人员的企业知识。这些个人因其对该学科的贡献而受到认可和尊重。大约有 32 名或更多技术人员为本文档的编写做出了贡献。这项团队工作涉及政府、军队、大学和公司的多个机构。这些组织包括但不限于德克萨斯大学;国家地面情报中心;尤马试验场;白沙导弹靶场;MITRE 公司;宾夕法尼亚州立大学;佛罗里达州埃格林空军基地的 46TW/TSR;美国陆军研究实验室 - 皮卡汀尼兵工厂;Sentech, Inc.;阿诺德工程开发中心;美国陆军水道实验站;阿伯丁测试中心;Bishop Multisensors 公司;和 BAE 系统。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
摘要:铁磁性和超导性(FMS)的共存一直是冷凝物质物理学的迷人领域,可洞悉非常规超导配对,自旋三重相互作用以及拓扑保护的表面状态。本文综述了FMS研究中最新的理论和实验进步,重点是隧道光谱,自旋轨道耦合以及拓扑材料的作用。我们讨论了自旋极性电流,超导间隙和铁磁顺序之间的相互作用,以及在包括拓扑绝缘子和石墨烯在内的新型材料中识别和操纵这些现象的挑战。特定的重点是使用隧道光谱作为探测对称性的工具,以及外部磁场和自旋轨道耦合对这些系统的影响。