摘要 Global Foundries 的 22FDX 技术是一种商业化的尖端集成电路制造工艺。该工艺结合了 22 nm 的典型最小栅极长度和 FD-SOI(全耗尽绝缘体上硅)多层结构。这些技术特性允许自适应体偏置、超低电压供电和超低泄漏,从电路应用的角度来看,这些特性有利于节能的射频信号传输、高性能计算和强大的 MRAM(磁阻随机存取存储器)。因此,该技术非常适合克服当前用于高速和低功耗 AMS(模拟和混合信号)应用的产品解决方案。特别是,SOI 技术特性可确保免受单粒子闩锁的影响。
电阻是衡量电流流过材料时遇到的阻力大小的一种量度。在某些材料中,这种阻力还取决于施加在材料上的磁化强度和方向。这种现象称为各向异性磁阻 (AMR)。1856 年,苏格兰物理学家开尔文勋爵通过对铁和镍等铁磁金属进行实验首次观察到了这种现象[1]。他发现,当磁力方向垂直于电流时,电阻减小,而当磁力方向一致时,电阻增大。AMR 的应用可以在自旋电子学中找到,这是一项固态技术,其中电子自旋可以被操纵以产生有用的特性。自旋电子学用于各种技术,例如车辆中的导航系统和用于数据存储的硬盘[2]。
随着半导体器件的缩小尺寸出现饱和迹象,微电子学的研究重点转向寻找基于新颖物理原理的新型计算范式。电子自旋是电子的另一个固有特性,它为目前在微电子学中使用的基于电子电荷的半导体器件提供了附加功能。自旋电流注入、自旋传播和弛豫以及栅极的自旋方向操控等几个基本问题已成功得到解决,从而使电子自旋能够用于数字应用。为了通过电方法产生和检测自旋极化电流,可以采用磁性金属触点。Boroš 等人 [1、2] 讨论的铁磁触点应足够小,以构成具有明确磁化方向的单个磁畴。小畴的磁矩在过去曾被成功利用,现在仍用于在磁性硬盘驱动器中存储信息。由此,二进制信息被编码到畴的磁化方向中。畴的磁化会产生可检测到的杂散磁场。交变磁矩会产生方向相反的磁场。读头可以检测到磁场并读取信息。Khunkitti 等人 [ 3 ] 的研究显示,高灵敏度磁头是实现超高磁密度磁数据存储技术的重要因素。为了写入信息,需要通过流入磁头的电流产生接近磁畴的磁场。正如 Khunkitti 等人 [ 4 ] 所指出的,记录密度主要取决于磁性介质的特性。如果没有外部磁场,磁畴的磁化将得以保留,不会随时间而改变。因此,在电子设备中添加磁畴可实现非易失性,即无需外部电源即可保持设备功能状态的能力。此外,可以通过在小磁畴中运行自旋极化电流来操纵其磁化方向。如果电流足够强,磁畴的磁化方向与自旋电流极化方向平行。通过电子电流对磁畴进行纯电操控,为开发一种具有更高可扩展性的概念上新型的非易失性存储器提供了令人兴奋的机会。冲击自旋极化电流可以由流经另一个铁磁体的电荷电流产生,该铁磁体与小磁畴之间由金属间隔物或隧道屏障隔开。由两个铁磁触点组成的夹层结构的电阻在很大程度上取决于触点在平行或反平行配置中的相对磁化方向。因此,编码到相对磁化中的二进制信息通过夹层的电阻显示出来。这种新兴的存储器被称为磁阻存储器。磁阻存储器结构简单。它们具有出色的耐用性和高运行速度。磁阻存储器与金属氧化物半导体场效应晶体管制造工艺兼容。它们为概念上新的低功耗数据计算范式开辟了前景
本论文致力于研究和开发适用于恶劣的太空环境的磁强计。由于在磁通门传感器领域已发表大量研究,因此本文仅涉及其中一小部分,主要关注具有各向异性磁阻 (AMR) 的传感器。主要目标是确定市售的现成组件 (COTS) 在辐射要求高且温度不稳定的环境中是否适用。与更广泛使用的磁通门相比,AMR 传感器的噪声高出 1 或 2 个数量级(分辨率/灵敏度较差),但在所有其他参数(尺寸、质量、功耗等)方面,它们要么相当,要么更好。最重要的是,对于通常在低地球轨道上运行的卫星(立方体卫星/小型卫星)部分,测量的磁场相对较强,不需要极高的灵敏度/低噪声,因此 AMR 传感器具有吸引力。
在第 11 阶段,QM 成功完成了预原型磁传感器系统的开发,该系统使用基于磁阻 (MR) 原理的低成本薄膜传感器元件。该系统利用美国空军资助的传感器开发计划的成果进行组装。QM 将系统安装在车辆上,并将 QM 停车场的系统噪音水平与使用昂贵的海军传感器获得的噪音水平进行比较。发现噪音水平受环境影响,因此使用 MR 技术不会影响性能。干扰是由圣地亚哥警察局 (SDPD) 为此目的提供的巡逻车测量的。设计了信号处理方法来减轻来自车辆本身和过往车辆的干扰源,以及实现更好的检测和定位性能。该系统被证明可以检测和跟踪测试车辆前方携带的螺丝刀(代替实际枪支)。
2011 年,ABB 推出了一款高效同步磁阻电机 (SynRM IE4),该电机无需使用稀土磁铁即可提供永磁技术的性能优势。工业设备案例研究表明,根据应用情况,该电机可节省高达 25% 的能源。该电机技术的其他优势包括降低轴承和绕组温度,从而提高可靠性和延长使用寿命。该设计还可以降低电机噪音,从而改善工作环境。SynRM 电机现在符合国际电工委员会 (IEC) 定义的全新 IE5 超高级能效等级。与常用的 IE2 感应电机相比,这些电机的能量损失降低了 50%,能耗显著降低。SynRM 电机由变速驱动器控制,可进一步最大程度地节省能源。
镍薄膜可用于从微电子到保护涂层 1 和催化等不同应用领域。2,3 Ni 是未来集成电路 (IC) 互连中铜的替代材料之一,因为 Ni 具有低电阻率和低电子平均自由程,当互连尺寸足够小时,它的电阻率会低于铜。4 例如,当线宽低于 10 纳米时,钴的电导率将超过铜,而镍具有相似的体电阻率,但电子平均自由程甚至低于钴。5 通过加热薄膜,可以将沉积在硅上的 Ni 薄膜转化为低电阻率接触材料 NiSi。全硅化物 Ni 栅极可用于互补金属氧化物半导体。6 由于其铁磁特性,镍对于磁存储器的发展至关重要。自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 被认为是一种通用存储器,有朝一日可能会彻底改变整个微电子行业。7
近年来,外尔半金属(WSM)在固态研究中引起了广泛关注。它们的独特性质是由电子能带结构中导带和价带的单个接触点决定的,该结构具有线性电子色散。[1,2] 在这种所谓的外尔锥中,电子表现为无质量的准相对论费米子,并由狄拉克方程的相应解外尔方程描述。[3] 这些外尔节点总是以相反手性的成对出现,在动量空间中分开并由拓扑保护的表面态(费米弧)连接。 [4,5] 这种特殊的电子结构产生了许多材料特性,例如高电子迁移率、[6,7] 低温超导性、[8–10] 巨大的磁阻、[11,12] 强烈的异常霍尔效应、[7,11,13] 以及 Adler–Bell–Jackiw 异常。[14–17]
(0) m AT = + 数据。(b) 施加磁场 H =1 kOe 测得的沿 ab 平面 ab(红色)和 c 轴 c(蓝色)的磁化率与 T 的依赖关系。(c) 指定温度下的横向磁阻 MR ab;(d) 使用图 (c) 中的数据生成的科勒缩放图。实线是科勒形式与数据的拟合。(e) 在 2 K 下,对于 H // c 和 H // ab 之间的各种角度(角度在插图中定义),最高 35 T 的 MR ab 。红线表示 10 T 以上的数据与幂律 MR H 的拟合。插图:指数 κ 的角度依赖性。(f) 图中所示温度下测得的霍尔电阻率 (ρ H ) 和相应的方程 (2) 拟合值(红线)。插图:25 K 时的霍尔电阻率显示符号变化。
测量仪器的广义配置和功能描述:仪器的功能元件、测量误差:粗大误差和系统误差、绝对误差和相对误差、测量仪器和仪器系统的 I/O 配置 - 干扰和修改输入的校正方法。08 小时仪器的广义性能特征:静态特性:静态校准的含义、准确度、精密度和偏差、静态灵敏度、线性度、阈值、分辨率、滞后和死区。刻度可读性、跨度、广义静态刚度和输入阻抗、动态特性基础。06 小时电阻、电感、电容和 Q 因数的测量:惠斯通电桥、灵敏度分析、局限性、开尔文双电桥、麦克斯韦电桥、西林电桥、源和探测器、电桥屏蔽、Q 计。08 小时位移测量:位移测量原理、电阻电位器、电阻应变计、可变电感和可变磁阻拾音器、LVDT、电容拾音器、激光位移传感器。 06 小时