对于La 3 Ni 2 O 7的光浮带(OFZ)生长,我们在1100°C的盒子炉中干燥了La 2 O 3粉(99.99%Alfa Aesar)。随后,通过将La 2 O 3和NiO(99.998%Alfa Aesar)混合而成,根据3:2:NI:NI:NI:混合物磨碎20分钟,并在氧化铝坩埚中转移到盒子炉中,然后将其加热至1100℃,持续24小时。圆柱形饲料和种子棒是通过烧结材料的球磨制制备的,这些材料被填充成直径为6 mm的橡胶形式。使用Riken Type S1-120 70 kN按下,将橡胶撤离并以不锈钢形式撤离并压制。所有杆在1150°C中进行热处理。单晶生长是在高压,高温的OFZ炉(HKZ型,Scidre GmbH,德国德累斯顿,德国)中进行的,可以在生长室中的气体压力高达300 bar。生长室(蓝宝石单晶)的长度为72毫米,壁厚为20 mm。在5 kW下运行的XE ARC灯用作HKZ垂直镜对齐中的加热源。然后将14厘米进料和4厘米种子杆在钢架上对齐HKZ,然后安装高压室。随后,腔室用15杆氧气加压,并以0.1 L/min的流速保持。连接熔融区后,通过以2 mm/h的速度移动种子来执行生长。2和3中的第3条]。98(1)Ni 1。 99(1)O 6。 83(7)。 该样本将称为La 3 Ni 2 O 6。98(1)Ni 1。99(1)O 6。83(7)。 该样本将称为La 3 Ni 2 O 6。83(7)。该样本将称为La 3 Ni 2 O 6。我们发现,这种生长在15 bar的氧部分压力下产生单晶体,具有LA 3 Ni 2 O 7 -X的化学计量,并交替单层(ML)Trilayer(TL)堆叠[见图[见图。通过电感耦合等离子体质谱法(ICP-OES)和气体提取对生长晶体进行的化学计量分析表明,LA 2的组成。83在以下。未确定化学计量法的样本将表示为La 3 Ni 2 O 7-x。在600℃下在600 bar o 2大气中退火的单晶将表示为la 3 ni 2 o 7。
基于树种的碳储量估计在尼日利亚很少见。因此,我们使用系统采样技术使用非破坏性方法研究了单个树木的能力。使用Borgu部门的预先分类的Landsat-Oli/TC图像铺设了一百个圆图。绘图中心已找到并用全球定位系统接收器标记。将12.61 m半径(500 m 2)的主要图细分为5.64 m半径(100 m 2)的子图。在主要地块中测量了乳房高度(dbh)≥10cm的树木,而在子图中考虑了≥5cm dbh的树。进行了物种识别和测量。核心样品。核心样品在70°C下干燥至恒定重量。然后将木材密度计算为烤箱干燥的重量/新鲜体积。地上碳上的碳确定为50%生物量。使用核心采样器和土壤螺旋钻以600个样品在两个深度的样品图内,在样品图内的三个点上对对角样品收集土壤样品。样品被气干,磨碎并通过2 mm的筛子筛分。核心采样器和环用于测量散装密度。在105°C下将样品干燥24小时。土壤有机物是通过Fe 2确定的,因此4滴定了酸 - 二足的消化,并计算了有机碳浓度。使用涉及木材密度,DBH和Tree-Height和Anova的异形方程分析树碳数据。 遇到了16个家庭中的35种树种。树碳数据。遇到了16个家庭中的35种树种。凹室微果是最常发生的(18.8%)。树种的丰富度,多样性和重要性值指数分别为2.852、4.779和41.76±35.41。Vitellaria Paradoxa和Afzelia Africana是唯一发现的脆弱物种。带有较大DBH的树木隔离了更多的碳。因此,平均DBH为111.4±0.00 cm的Adansonia digitata隔离了最高量(2.8吨/公顷),这与其他数量明显不同(p <.05)。Securidaca longipendiculata的碳量最少(0.001吨/公顷)。与此同时,土壤碳在Acacia kosiensis,V。Paradoxa和Grewia Mollis主导的地块中较高,分别为0.006758吨/ha,平均0.073±0.0021 ton/ha的bon-bon-Stock和car--bon-stock和co-2,分别为0.271±0.010吨/ha的co 2。
变革之风已然吹起,世界如今正致力于新技术,其中可再生能源是重要的一项。考虑到商业和工业对石油和天然气的消耗,每个人都意识到需要一些替代能源来生产能源。风也是发电资源之一。风力涡轮机是一种将风的动能(也称为风能)转换为机械能的装置;这一过程称为风能。如果机械能用于发电,则该装置可称为风力涡轮机或风力发电厂。如果机械能用于驱动机器,例如磨碎谷物或抽水,则该装置称为风车或风泵。同样,当它用于给电池充电时,它可能被称为风力充电器。作为一千多年风车发展和现代工程的成果,当今的风力涡轮机有各种垂直和水平轴类型。最小的涡轮机用于电池充电或船上辅助电源等应用;而大型电网连接的涡轮机阵列正成为风力发电(生产商业电力)越来越重要的来源。巴基斯坦自上个十年以来一直面临电力短缺的问题,为了解决这一问题,政府采取了可再生能源方面的措施,并表现出浓厚的兴趣,一份调查报告显示,巴基斯坦在伊斯兰堡、塔塔和卡拉奇地区拥有理想的风力走廊。运行涡轮机所需的最低风速为 3~4 公里/秒;幸运的是,我们的风力走廊的风速为 6~7.5 米/秒,这是风力涡轮机的理想风速。调查报告显示,巴基斯坦可以从风能和太阳能中生产 300,000 兆瓦的电力,而巴基斯坦的实际需求估计为 22,000 兆瓦。巴基斯坦的第一个 50 兆瓦风电场项目由土耳其公司 Zurlo Enerji 工程公司在 Jhampir(信德省)启动,并完成了五台风力涡轮机,其中一台已卸载。每台涡轮机的容量为 1.2 兆瓦;目前已有四台涡轮机投入运行,发电量为 4.8 兆瓦。遗憾的是,由于一些当地问题以及财务问题,该项目已关闭。 Fauji Fertilizer Company Energy Limited (FFCEL) 的 49.5 兆瓦风力发电场项目被授予 Nordex(德国)和 Descon Engineering Ltd.(巴基斯坦)。两家公司都全神贯注地开始了该项目,不幸的是,大约 50 名武装的当地入侵者严重殴打了项目团队,导致项目暂停执行三个月。2011 年 7 月,工作恢复。33 台风力涡轮机(每台 1.5 兆瓦)的安装于 2012 年 7 月成功完成,该项目目前处于调试阶段,即将投入运营。
Master Abrasives通过推出更全面的主玻璃化CBN磨料系列扩展了其超临床产品,并补充了其现有的高精度外部和内部研磨轮。这个新范围旨在满足制造商的需求,这些制造商磨削具有紧密几何和尺寸公差和难以磨料的高精度组件的需求,并具有附加功能,可以处理小至1 mm的孔尺寸。该范围包括安装在精密螺纹或碳化钨柄上的高性能玻璃化CBN车轮,非常适合在诸如航空航天,燃油喷射,轴承,方程式,一级方程式和其他许多其他高精度应用等行业中发现的各种具有挑战性的材料。这种新的添加增强了大师磨料作为优质磨料和超级生产产品的值得信赖的供应商的声誉,为希望提高生产率的制造商提供全球支持。Master Abrasives董事总经理Paul Batson评论说:“凭借超过50年的行业经验,我们拥有评估和匹配每个应用程序的正确产品的专业知识,以确保客户实现最有效的流程。这最终导致高质量的产品,竞争价格和最高生产率。我们的新CBN系列是在主品牌下开发的,已经以其质量在国际上获得认可。这包括考虑速度,电源,冷却液以及机器主轴的动态和静态刚度等因素。我们很高兴能在2025年与新客户合作,以帮助他们实现自己的磨削和完成目标,并从机械上实现最佳性能。”大师磨蚀剂的应用支持团队采取的磨削过程所采取的步骤,旨在开发将车轮等级和尺寸与设备功能相匹配的工程车轮规范另一个重要的考虑因素是调皮工具及其参数,可能会对车轮性能产生重大影响。Master Abrasives现在提供玻璃化的CBN规格,该规范设计为可与固定敷料工具一起使用。Master的工程师可以通过微调机器设置,冷却液,速度,进料和敷料参数来提供建议,以优化主轮的使用。作为发布的一部分,大师磨料将继续提供其既定的替代超级缩写键系统和辅助产品,例如精密的钻石梳妆台和磨碎的羽毛笔,为各个行业的制造商带来全面的包装。有关Superabrasive产品的更多详细信息Master Arasives优惠,客户可以联系Master的技术代表以获取有关应用程序和产品的专家建议。大师磨砂电话:01327 703813电子邮件:sales@master-abrasives.co.uk www.master-abrasives.co.uk
抽象食品接触表面是食物污染的主要来源。它们具有进一步转移到与之接触的食物的污染物。这些污染物可能具有生物学或化学起源。The biological contaminants are microorganisms such as Staphylococcus aureus, Campylobacter spp , Escherichia coli, Shigella spp , Salmonella spp , Listeria monocytogenes, Vibrio cholerae, Bacillus cereus , norovirus, hepatitis A virus, etc.化学污染物是可以通过食物接触材料(例如包装材料或清洁剂的残留物)转移到食物的化学物质。这些化学物质对人类健康有害。食用时生物学和化学污染物对人类有害。因此,应清洁和清洁食物接触表面,以避免用这种污染物污染食物,并确保向公众提供安全的食物。关键词:食物接触,污染,人类健康简介食品服务运营的重要组成部分是食品安全。大多数人都认为这个问题吸引了最少的关注和专注。有各种链接的元素影响食物的微生物污染,例如制备方法,餐饮和食堂设施的卫生条件,或食物的处理,储存和分布(Erdogan&Pamuk,2020年)。约有97%的食物中毒案件与食品服务行业的不适当食品处理有关,这是一个主要问题(Soares等,2012)。2008; Ali等人,2016年;相反,2017年)。2008; Ali等人,2016年;相反,2017年)。病原体可以通过食物接触表面饲养并引入食物(Tenna等,2023)。修剪,切片,磨碎,切碎,剥离,机械磨损和许多类型的瓦解会在污染的表面进行时会引入污染物(Wirtanen等,2003)。尚未正确清洁和消毒的食物接触表面可能构成健康问题(Nahar&Mahyudin,2018年)。即使在清洁和消毒后,各种食物变质细菌也可以附着并留在食物接触表面上(Mafu等,2010)。这些生物具有附着这些表面的能力被称为生物膜的发展。这使得它们难以消除抗菌治疗(Khelissa等,2017)。水是厨具污染和生物膜形成的关键组成部分(Srey等,2016)。结果,洗碗水的温度和微生物构成具有效果(Nicolas等,2006)。细菌,例如沙门氏菌,志贺氏菌,大肠杆菌(肠杆菌科家族的成员),单核细胞增生李斯特菌,弯曲杆菌和金黄色葡萄球菌是最常见的食物 - 盛大爆发原因的原因(Texeira,2007年,2007年; Mafu等。受污染的厨房用具造成27%的暴发和感染是由食源性病原体引起的(WHO,2000; Greig等,2007; Soares等,2012)。食源性疾病的主要原因是吃被微生物病原体,化学物质或细菌生物毒素污染的食物(谁。污染的主要原因包括水质和稀缺性低,食品处理人员缺乏培训和经验,监控和监督不足,卫生标准不足,存储设施不足以及不适合食品运营的地方。
WITH EPOXY RESIN COMPOSITES Z. HUSSAIN a , S. TAHIR a,b,* , K. MAHMOOD a , A. ALI a , M. I. ARSHAD a , S. IKRAM a , M. AJAZ UN NABI a , A. ASHFAQ a , U. UR REHMAN a , Y. UDDASSIR a a Government College University Faisalabad, 38000, Pakistan b University Of New South Wales, Australia Silver纳米颗粒具有出色的,电和光学特性,使其非常适合光学,生物医学和抗菌剂应用。当前研究的主要目标是改变表面电阻,以增加其吸收。在这项研究工作中,银纳米颗粒是通过共沉淀法制备的。对于此Agno 3和环氧树脂在250 mL去离子水中混合,搅拌半小时。然后,通过滴下滴下降氨溶液NH 4 OH,以将溶液的pH值保持为(10-11)。过滤溶液后,将滤液在150 0 C的温度下干燥2小时C,将其磨碎后,将其在5小时的时间跨度以1000 0 C放入炉中。通过增加0.5g银中环氧树脂(0.25g,0.5g和0.75g)的浓度来制备三个样品。通过使用XRD在27 0角度使用XRD,峰强度增加320(A.U)。峰强度的增加表明,环氧树脂的沉积和质地是在相同的方向上创建的。由FTIR检查的样品具有0.5 g环氧树脂和0.5g Ag,显示出具有C -H弯曲的796.72 cm -1的尖峰。还出现一个宽峰564.88厘米-1,与甲基匹配。引言纳米技术是分子量表的功能系统的工程。另一个样品在FTIR检查的0.5 g白银中具有0.75g环氧树脂,在875.79cm -1时显示出尖峰,显示C = C键。在1424.36厘米-1、564.88cm -1和464.80cm -1的1424.36cm -1和464.80cm -1获得了三个宽峰。用银样品的紫外可见光谱显示出在381.98 nm处获得𝜆max,显示了分子的强光子吸收。结论是,银中环氧树脂复合材料是增强银纳米颗粒技术应用的一种有前途的方法。(2020年6月6日收到; 2020年8月31日接受)关键词:硝酸银(AGNO 3),NH 4 OH,环氧树脂,pH,X射线衍射(XRD),傅立叶转化Infra-Red Spectroscoppopy(ft-ir),UV-Vis-Visible Spectroscoppy 1。这涵盖了当前的工作和更高级的概念。现代合成化学已经达到了可以将小分子制成几乎任何结构的地步。这些方法今天用于生产各种有用的化学物质,例如药物或商业聚合物。这种能力提出了将这种控制范围扩展到下一个大量水平的问题,寻求将这些单分子组装到由许多分子组成的超分子组件中,这些分子以明确的方式排列的许多分子。
Antony Van Leeuwenhoek(1632-1723)他是第一个人,发明了显微镜并发现了微生物世界。他是来自荷兰代尔夫特的德拉珀(商人)。他曾经磨碎镜头,并将显微镜作为爱好。Leeuwenhoek的显微镜可以放大约200-300次的物体。在他的显微镜下,Leeuwenhoek观察到了各种各样的东西,例如雨水,池塘水和他自己的牙齿刮擦。他看到了微小的移动物体,并将其称为“小动物”,我们现在将其称为原生动物,酵母和细菌。他制作了准确的素描,并将其发现传达给了“伦敦皇家学会”。因此,Leeuwenhoek是第一个发现显微镜的人,以及在口中发现细菌和螺旋体的存在。爱德华·詹纳(Edward Jenner)(1749-1823):詹纳(Jenner)是一位英国国家医生,他发现了针对小痘的安全有效疫苗接种。最终导致消灭小痘(Variola)。詹纳观察到,暴露于职业牛波克感染的乳制品对小痘的影响。他在实验上证明了对小痘的耐药性可以通过向人的脓肿型脓疱型(疫苗)注射到人(1796年)。Pasteur给出了一般术语“疫苗”(Vacca = Cow),以纪念Jenner的Cow pox疫苗,以诱发活跃的免疫免疫。詹纳(Jenner)于1798年发表了他的调查结果,以“对瓦奥尔疫苗的因果关系的调查”小册子发表。路易斯·巴斯德(Louis Pasteur)(1822-1895),他是法国里尔大学的化学教授。 他表明葡萄酒不会变质,如果将其加热到50-60°C几分钟。路易斯·巴斯德(Louis Pasteur)(1822-1895),他是法国里尔大学的化学教授。他表明葡萄酒不会变质,如果将其加热到50-60°C几分钟。他被认为是“微生物学的父亲”,因为他的贡献导致了微生物学作为单独的科学学科的发展。通过使用天鹅颈烧瓶实验,他证明了“生物发生”的理论,并反驳了“自发产生理论”(Abiogenesogeny)。他致力于葡萄酒和啤酒的酸化,发现这种酒精损害是由于不良生物的生长,而理想的微生物通过称为“发酵”的化学过程产生酒精。此方法称为“巴氏杀菌”,现在广泛用于乳制品单位,以杀死牛奶中的致病性微生物。他是“疾病细菌理论”的创始人,因为他可以看到疾病是由微生物引起的。在他的研究中,他发现了灭菌的重要性,并发现了Steam Steri-lizer,Autoclave,Autoclave和Hot Air Oven。他还确立了棉羊毛塞在保护培养基免受空中污染中的重要性。有氧细菌区分了有氧细菌,并创造了“厌氧”一词,以指无需生长氧的生物。他研究了由原生动物引起的一种丝绸疾病“ pebrine”,并表明可以通过选择蠕虫从寄生虫繁殖的蠕虫来控制感染。
表面磨碎ASIS 1045钢D.D.的表面硬度计算。Trung,N.N。 Tung,N.H。 儿子,L.H。 ky,T.T。 Hong,N.V。Cuong和V.N. pi 3热浸55%铝 - 锌合金涂层钢板和A5083铝合金板之间的摩擦 - 螺距机械连接,并使用常规的打孔T. Ohashi,T。Ohno,Y。Shiraishi,Y。Shiraishi,H.M。 Tabatabaei和T. Nishihara 8电气排放加工对圆柱形零件的表面粗糙度L.H. 的影响 ky,T.H。 Tran,N.V。Cuong,T.T。 Hoang,D.T。 Tam,L.A。Tung,N.T。 tu和v.n. pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响 oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。的影响 ky,T.T。 Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Trung,N.N。Tung,N.H。 儿子,L.H。 ky,T.T。 Hong,N.V。Cuong和V.N. pi 3热浸55%铝 - 锌合金涂层钢板和A5083铝合金板之间的摩擦 - 螺距机械连接,并使用常规的打孔T. Ohashi,T。Ohno,Y。Shiraishi,Y。Shiraishi,H.M。 Tabatabaei和T. Nishihara 8电气排放加工对圆柱形零件的表面粗糙度L.H. 的影响 ky,T.H。 Tran,N.V。Cuong,T.T。 Hoang,D.T。 Tam,L.A。Tung,N.T。 tu和v.n. pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响 oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。的影响 ky,T.T。 Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Tung,N.H。儿子,L.H。ky,T.T。Hong,N.V。Cuong和V.N. pi 3热浸55%铝 - 锌合金涂层钢板和A5083铝合金板之间的摩擦 - 螺距机械连接,并使用常规的打孔T. Ohashi,T。Ohno,Y。Shiraishi,Y。Shiraishi,H.M。 Tabatabaei和T. Nishihara 8电气排放加工对圆柱形零件的表面粗糙度L.H. 的影响 ky,T.H。 Tran,N.V。Cuong,T.T。 Hoang,D.T。 Tam,L.A。Tung,N.T。 tu和v.n. pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响 oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。的影响 ky,T.T。 Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Hong,N.V。Cuong和V.N.pi 3热浸55%铝 - 锌合金涂层钢板和A5083铝合金板之间的摩擦 - 螺距机械连接,并使用常规的打孔T. Ohashi,T。Ohno,Y。Shiraishi,Y。Shiraishi,H.M。 Tabatabaei和T. Nishihara 8电气排放加工对圆柱形零件的表面粗糙度L.H.ky,T.H。Tran,N.V。Cuong,T.T。Hoang,D.T。 Tam,L.A。Tung,N.T。 tu和v.n. pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响 oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。的影响 ky,T.T。 Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Hoang,D.T。Tam,L.A。Tung,N.T。 tu和v.n. pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响 oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。的影响 ky,T.T。 Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Tam,L.A。Tung,N.T。tu和v.n.pi 13切割液对快速固化铝(RSA 431)的单点钻石转向表面粗糙度的影响oyekunle和K. abou-el-hossein 18过程参数对电气排放加工圆柱形零件N.V. Cuong,L.H。ky,T.T。Hong,T.T。 Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Hong,T.T。Hoang,N.M。Cuong,L.A。Tung,N.T。 tu和v.n. pi 24Hoang,N.M。Cuong,L.A。Tung,N.T。tu和v.n.pi 24
散热器通过调节其热输出来维持电子设备的最佳工作温度,从而起着至关重要的作用。有效的设计对于确保有效的散热量至关重要,从而延长了组件寿命和整体系统性能。随着表面积的增加,由于更多的接触点而引起的热量耗散速率也会增加。这意味着更大的表面积可以从散热器到周围的空气中更大的热传递,从而增强冷却。在紧凑的系统中,在包含结构的同时达到一个较大的表面积至关重要。鳍和销阵列,微通道散热器或折叠鳍结构等技术可以增强热量消散而不会增加尺寸。多孔材料,例如金属泡沫,为热传递提供了巨大的内部表面区域。选择散热器的材料时,导热率是关键参数。铜的高热电导率为390-400 w/m·K,使其非常适合高端应用。但是,其成本和密度可能构成挑战。铝的导热率相对较低,但更具成本效益和更轻。像石墨烯这样的新材料具有出色的热导率,并且可能在HSF设计方面具有希望。材料的选择取决于特定的应用要求,即考虑效率,成本,质量和坚固性等因素。有效的散热器设计取决于三种主要的传热机制:传导,对流和辐射。鳍片或销阵列可以增加表面积,而风扇或鼓风机可以提高流速。传导对于将热量从组件转移到外部环境至关重要,从而进一步耗散。总而言之,选择合适的材料和优化散热器设计对于有效的热管理至关重要。热性能优化涉及通过改善热量交换的热界面材料保持热源和散热器之间的良好接触。适当的热路径分布和避免间隙对于有效的热传导至关重要。对流在冷却中起着至关重要的作用,最大化表面积对于提高对流效率至关重要。辐射是散热器设计中的另一个重要机制,Stefan-Boltzmann定律描述了它。使用高发射率的涂料可以显着增强辐射传热。散热器的几何特性在优化热辐射方面也起着至关重要的作用。为了实现有效的热量散热,特征应尽可能多地暴露表面积。散热器的效率在很大程度上取决于其表面,对流传热取决于表面积。计算给定的散热速率的必要表面积涉及使用方程q = h×a×Δt。傅立叶传导定律描述了通过材料的传热:QCONDUCTION = -K×A×ΔT/L。要确定鳍有效性,请使用等式q = h×a×ΔT来计算单个鳍片的传热速率。通过优化热电阻,对流和辐射,可以设计有效的散热器,以有效地将热量从表面散开。制定散热器的过程涉及几个阶段,这些阶段需要特定的工程计算以最大程度地提高热效率。要定义其性能,需要考虑三个关键因素:瓦特,环境温度(TA)和最高连接温度(TJ)中的散热耗散需求(Q)。例如,如果电子组件耗散20 W的热量,则Q = 20 w。然后通过从连接温度中减去环境温度来计算所需的温度升高(ΔT)。散热器的热电阻必须达到所需的温度升高,rth =ΔT/q = 55/20 = 2.75°C/w。散热器选择的类型和材料取决于诸如热量,重量和成本等因素。铝的导热率约为205 W/m·K,因此由于其有效性和成本而适合使用。调整散热器的尺寸和形状,以满足所需的热电阻水平,其中包括鳍片类型,销型或两者。鳍间距计算为:鳍间距=散热器的高度/鳍数。选择散热器设计时,请确保满足热电阻计算。空气对流传热系数(H)通常为10 - 50 W/m²·k。有效的热电阻计算为:rth,总计= rth,散热器+rth,界面+rth,结。按照设计信息构建物理散热器,并通过使用温度计测量温度差异来评估。取决于结果,可以对设计进行一些修改,以达到必要的热电阻。在设计电子设备时,适当的热管理至关重要,因为错误可能会产生负面影响。一个常见的错误是低估了适当的散热所需的表面积,这可能导致温度状态增加,甚至会导致组件的热冲击。制造有效的铝热散热器对于冷却电子设备至关重要,并防止它们过热。散热器用于消散由晶体管,CPU和功率放大器等组件产生的热量。制作散热器的过程涉及多个步骤,包括选择合金,设计散热器以进行最佳性能,准备材料,完成表面以增强与组件的接触,创建鳍以增加表面积,并将所有部分组装在一起。铝是一种流行的选择,因为其出色的导热率和轻质性质。但是,并非所有铝合金都适合散热器。通常使用6061和6063,因为它们具有良好的导热率且具有成本效益。散热器的设计应考虑尺寸,形状和鳍排列等因素,以确保最佳性能。准备材料涉及使用锯或CNC机器将其切成所需的尺寸,并在此过程中佩戴安全齿轮。整理表面需要砂纸逐渐磨碎的砂纸,然后使用金属抛光化合物进行抛光。这会产生光滑的表面,从而促进与热生成分量更好的接触。创建鳍涉及使用CNC机器或类似工具将其均匀地切入铝材材料,从而大大增加了散热器的表面积并允许更好的散热。散热器的鳍的尺寸和形状均匀,以确保在整个散热过程中保持稳定的性能。