• 该大学成立于 1765 年,被认为是世界上最古老的矿业大学 • 规模:3,471 名学生(2022/2023 冬季学期) • 41.4% 的国际学生(2022/2023 冬季学期) • 弗莱贝格工业大学是采矿、地球科学和材料科学领域的世界领先大学之一。• 在 QS 世界排名的工程 - 矿产和采矿类别中,它目前排名第 22 位。• 大多数学位课程免收学费 • 与 150 多所外国大学签订了交流协议 • TUBAF 拥有世界上最美丽的矿物收藏之一 terra mineralia • TUBAF 拥有一座地下矿井,可供学习和研究 • 化学元素锗和铟是在弗莱贝格发现的 • 著名科学家和探险家亚历山大·冯·洪堡曾在弗莱贝格学习 • 现代化的图书馆拥有多功能空间,供学生互动和学习新技能
Avalon Advanced Materials Inc.(以下简称“公司”或“Avalon”)的管理层讨论与分析(“MDA”)是对公司截至 2022 年 11 月 30 日的三个月(“季度”)的财务业绩的分析。以下信息应与随附的本季度未经审计的简明合并中期财务报表以及截至 2022 年 8 月 31 日的年度合并财务报表和年度信息表一起阅读。本 MDA 于 2023 年 1 月 10 日编制。业务性质和整体表现 Avalon 是一家加拿大矿产开发公司,在加拿大多伦多证券交易所上市,在美国 OTCQB 创业板交易,也在德国法兰克福证券交易所交易。公司寻求通过成为清洁技术关键矿物的多元化、可持续生产商和营销商以及扩大其特种矿产品市场来创造股东价值。 Avalon 主要在加拿大开展业务,拥有多元化的资产基础,使公司能够接触到这些关键矿物的广泛领域,包括锂、稀土元素 (REE)、铯、钽、锡、铟、镓、锗和锆。该公司正处于开发其五种矿产资源中的三种的不同阶段,特别注重锂、铯、钽、锡、铟和稀土。Avalon 继续评估具有近期发展潜力的新机会,例如使用新技术从历史矿山废料中提取关键矿物。这是公司在其东肯普特维尔锡铟项目和安大略省东北部另一个名为 Cargill 的矿场中模拟的机会,在那里有可能从一处已关闭的磷酸盐矿场的尾矿中回收稀土和钪。这一概念吸引了 ESG 投资者和联邦政府越来越多的兴趣,他们现在正在推广“循环经济”,特别是对于废料中含有丰富关键矿物的矿场,但确保进入这些矿场仍然具有挑战性。该公司所有三个先进项目都拥有大量矿产资源和初步经济评估,下一步是确定矿产产品的市场和/或处理大宗样品以展示适当的提取工艺并生产产品样品供客户评估。技术进步可能会突然为某些关键矿物创造新的需求,如果能够迅速做出反应以满足新的需求,就会为新生产商提供机会。一个众所周知的例子是“磁铁稀土”钕和镨(“Nd-Pr”)的需求突然增长,再加上中国控制稀土供应链导致供应短缺的风险。公司已将可持续发展原则作为其业务实践的核心,并坚定承诺实施企业社会责任 (CSR) 最佳实践。2022 年 12 月,公司发布了第 11 份年度综合可持续发展报告(“2022 年可持续发展报告”),并于 2021 年 2 月在 Sustainalytics 的同行公司中获得了前 5% 的 ESG 风险评级。公司还入选了 Benchmark Minerals 的首届全球锂 ESG 排名,位列全球前 5%。公司认为,由于其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)在包括锂离子电池、电动汽车、电子产品、小型模块化反应堆和航空航天在内的新技术应用中至关重要,因此工业对其寻求生产的清洁技术材料产品(尤其是锂、铯、钽、稀土、锆和锡)的需求正在增长。
检测低功率和高功率光的短脉冲 能够在恶劣环境和很宽的温度范围内工作 大动态范围 在感应到明亮目标后,快速过载恢复以检测后续信号 承受高光功率密度,提高探测器的损伤阈值 除了这些标准之外,许多 LRF 和 LiDAR 系统设计都会受益于在传输和接收过程中使用光纤,以改善系统热管理并降低整体系统噪音 (1) 。许多国防应用都需要商用现货 (COTS) 组件,因为 COTS 更容易获得且更具成本效益。CMC 推出了一系列新的 COTS 尾纤 SMT 封装铟镓砷 (InGaAs) 雪崩光电二极管 (APD) LIDAR/LRF 接收器,276-339832-VAR,根据 MIL-STD 规格进行设计、测试和验证。这款 COTS APD 接收器提供的性能可以更准确地检测更长距离的小目标。坚固的光纤尾纤封装有利于节省空间和简化系统集成,同时满足 MIL-STD 环境操作条件。
这项工作研究了铟镓砷 (InGaAs) SOI-FinFET 中界面缺陷在高性能应用中的可靠性。In 0.53 Ga 0.47 As 是一种很有前途的下一代晶体管材料,因为它具有高电子迁移率,这对于高速和高频应用至关重要。然而,界面陷阱电荷 (ITC) 的存在会严重影响器件的性能和可靠性。我们全面分析了 InGaAs SOI-FinFET 中的 ITC,研究了它们对线性性能参数(如 VIP2、VIP3、IIP3、IMD3、HD2 和 HD3)的影响。所有结果表明,优化界面质量对于提高 InGaAs SOI-FinFET 的可靠性和性能至关重要。这项工作为缺陷机制提供了宝贵的见解,并为改进制造工艺以实现更可靠的高性能 InGaAs-SOI-FinFET 提供了指导。因此,基于 InGaAs 的 FinFET 是最适合下一代使用的高性能半导体器件。 InGaAs 具有优异的电子迁移率和高饱和速度,为高频和高速应用提供了显著的优势,使其成为硅的理想替代品。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
为探索节约能源、促进能源再生的途径,本文介绍了新型高熵合金材料的合成及其在能源转换与储存方面的应用。通过分析其高强度、抗回火、抗软化等性能,制备了一种新型高熵合金材料。根据其微观组织和铸态组织,研究了新型高熵合金的电化学性能。实验结果表明,与FeSn2相比,新型高熵合金材料在循环充电过程中的容量、电化学性能、容量稳定性和倍率均具有较大优势;在较低的退火温度下,实心Co纳米颗粒在纳米尺度上通过kirkentel效应进一步转变为空心Co3O4纳米球。 NC-Co 3 O 4 纳米复合材料作为锌空气电池阴极表现出优异的 OER 和 ORR 性能:低过电位 352 mv、高初始还原电位 0.91 v 和半波电位 0.87 v、高开路电压 1.44 v、电容 387.2 mah/g 和优异的循环稳定性。来自高熵合金-74 的 Nico 双金属磷化物纳米管是有效的水分解电催化剂。
红外探测与现代微电子技术的融合为紧凑型高分辨率红外成像提供了独特的机会。然而,作为现代微电子技术的基石,硅由于其带隙为 1.12 eV,只能探测有限波长范围(< 1100 nm)内的光,这限制了其在红外探测领域的应用。本文提出了一种光驱动鳍片场效应晶体管,它打破了传统硅探测器的光谱响应限制,同时实现了灵敏的红外探测。该装置包括用于电荷传输的鳍状硅通道和用于红外光收集的硫化铅薄膜。硫化铅薄膜包裹硅通道形成“三维”红外敏感栅极,使硫化铅-硅结处产生的光电压能够有效调节通道电导。在室温下,该器件实现了从可见光(635 nm)到短波红外区域(2700 nm)的宽带光电探测,超出了常规铟镓砷和锗探测器的工作范围。此外,它表现出 3.2×10 −12 的低等效噪声功率
摘要 将含有大量铋 (Bi)、锑 (Sb) 和铟 (In) 合金添加剂的多种高性能无铅焊料合金的耐热疲劳性与近共晶 SAC305 (Sn3.0Ag0.5Cu) 焊料合金进行了比较。该研究使用带有零欧姆 1206 表面贴装片式电阻器的菊花链测试板作为测试工具。热循环采用三个不同的热循环曲线(0/100°C、-40/125°C 和 -55/125°C)进行,以满足电信、消费和航空航天/国防工业的资格要求。将焊料合金的相对热循环性能与早期研究使用两个球栅阵列测试组件的结果进行了比较。在之前的研究中,片式电阻器的合金性能排序与 BGA 组件不同。结果强调了使用多个测试组件来更彻底地了解新合金系统的热循环行为性能的重要性。使用威布尔统计、微观结构表征和故障模式分析来比较合金性能。
摘要 :GaAs 基材料系统因可承载具有出色光学特性的 InAs 量子点 (QD) 而闻名,这些量子点的发射波长通常为 900 nm 左右。插入变质缓冲区 (MMB) 可以将这种发射转移到以 1550 nm 为中心的具有技术吸引力的电信 C 波段范围。然而,常见 MMB 设计的厚度(> 1 𝜇 m)限制了它们与大多数光子谐振器类型的兼容性。在这里,我们报告了一种新型 InGaAs MMB 的金属有机气相外延 (MOVPE) 生长,该 MMB 具有非线性铟含量渐变分布,旨在在最小层厚度内最大化塑性弛豫。这使我们能够实现晶格常数的必要转变并为 180 nm 内的 QD 生长提供光滑的表面。展示了沉积在此薄膜 MMB 顶部的 InAs QD 在 1550 nm 处的单光子发射。通过纳米结构技术将新设计集成到靶心腔中,证明了新设计的强度。
MIL-STD-171F 前言 本标准旨在建立表面处理系统代码,这些代码可链接或交叉引用用于表面处理和以其他方式处理金属和木材表面的特定规格信息。它还可作为选择合适的表面处理材料、程序和系统的一般指南。它涵盖有机(油漆、清漆等)和无机(金属镀层、磷化金属等)涂层。特定于各个机构的专用系统由这些组织发布的图纸、规范和标准涵盖,并作为本标准的补充。此类采购文件应直接引用适用的规范。例如,MIL-STD-186 涵盖陆军导弹武器系统的喷漆和其他表面处理。表格中的表面处理系统代码编号在本标准的未来修订中不得更改,因为这些代码编号应在图纸、合同和最终项目规范中引用。如果 MIL-STD-171 先前版本中的系统已从修订中删除,则表格中会注明要用作替代的系统。为了方便引用,所有程序,无论是清洁表面、沉积薄膜还是执行其他所需的功能,都归类为“表面处理”。作为如何使用此标准的示例,假设零件要用 0.001 英寸(25 微米)厚的铬化锌板进行表面处理。转到表 II,无机表面