海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。
陆地生态系统隔离额外碳(C)的能力(C)浓度上升取决于土壤养分的可用性1,2。以前的证据表明,在磷(P)剥夺土壤上生长的成熟森林的隔离能力有限(参考文献。3–6),但是生态系统P循环及其CO 2响应的不确定性代表了在气候变化下对土地C下沉的机械预测的关键瓶颈7。在这里,通过编译暴露于高架CO 2的P限制成熟森林的第一个综合P预算,我们表明,土壤微生物捕获的P限制了生态系统P回收和植物吸收的可用性。树有效地使用了p,但是矿化土壤p的微生物先发似乎限制了在升高的Co 2下增加P的吸收和同化的树木的能力,因此,它们隔离了额外的C植物策略以刺激植物策略以促进型植物的植物P循环和种植P摄取,例如增加rhizossphere c ofers caption caption caption caption caption in New trim per in Forne cops in trim cops in trim cops cops in trim cops cops sabs confim plimim cost in cops sabs cops sass。我们的结果确定了p可用性限制CO 2受精的关键机制,并将指导地球系统模型的发展以预测未来的长期C储存。
摘要:这项研究研究了使用表面分析和电化学测量值改善晚期高强度钢(AHS)的磷酸性的最佳腌制条件。要删除在AHS表面形成的SIO 2,将30wt。%NH 4 HF 2添加到腌制溶液中,从而显着减少AHSS表面上的SIO 2的数量。使用腌制溶液中的HNO 3浓度高于13%,可显着提高磷酸性。此外,用基于HNO 3的溶液而不是基于HCl的溶液腌制后,磷酸盐晶体变得更加细致。电化学阻抗光谱(EIS)的数据表明,经受HNO 3的腌制的AHSS的耐腐蚀性高于基于HCl的腌制的AHSS。参与磷酸盐处理过程的氟化合物仅在基于HNO 3的溶液中形成钢表面。F与磷酸盐溶液反应的F化合物增加了大量溶液的pH值,从而大大提高了磷酸性。由于磷酸盐结构的结束和表面粗糙度的增加,在基于HNO 3的条件下,磷酸性比基于HCl的条件更好。
磷酸盐溶解微生物(PSM)被称为细菌或真菌,使植物可用的土壤中不溶性磷。迄今为止,作为有益的微生物,对PSM的研究表明,它们在农业,环境工程,生物修复和生物技术中具有潜在的应用。目前的高成本和当地微生物的竞争是阻碍PSMS商业化和应用的最重要因素,例如生物培训剂,土壤调节剂或补救剂等。可以参与几种技术策略来解决这些问题的解决方案,例如大规模生产,预先土壤准备,基因工程等。另一方面,需要进一步的研究来提高PSM在溶解磷酸盐,促进植物生长,优选的土壤修复方面的效率和有效性。希望,PSM将被发展为可持续农业,环境保护和管理的环保工具。
磷 (P) 是植物生长必需的营养物质,是不断增长的世界人口增加粮食供应所必需的。然而,农业生产中磷的径流和淋溶会引发藻华、水体富营养化和水质问题 (Bol 等人,2018 年;Withers 和 Haygarth,2007 年)。由于土壤中磷的残留,减少施肥量可能不足以在短期至中期内减少地表水的磷负荷 (Barcala 等人,2020 年;Chardon 和 Schoumans,2007 年;Mellander 等人,2016 年;Sharpley 等人,2013 年)。为了更快地降低地表水中的磷含量,我们需要采取缓解措施,减少耕地磷的扩散输入(Mendes,2020;Penn等,2017;Schoumans等,2014)。这些缓解措施应具有成本效益,并且不占用或很少占用宝贵的耕地,以便农民容易接受。铁包砂 (ICS) 是一种磷酸盐 (PO 4 ) 吸附材料,它是饮用水生产的副产品(Chardon 等人,2012 年;Sharma 等人,2002 年;Van Beek 等人,2020 年)并且可放置在管道排水沟周围或场边缘过滤器中以去除 PO 4 ,不占用额外空间(Chardon 等人,2021 年;Groenenberg 等人,2013 年;Lambert 等人,2020 年;Vandermoere 等人,2018 年)。ICS 涂层中的铁 (Fe) 是在快速砂滤器顶部的砂粒周围形成的,当快速砂滤器去除悬浮的 Fe(氢氧化)氧化物时形成的,这些氧化物是在缺氧含 Fe(II) 地下水曝气后或添加 Fe 盐去除有机物后形成的。 ICS 兼具良好的吸附性能和较高的水力传导率。这些特性加上其低成本、丰富的来源,使其成为大规模 PO 4 去除过滤器的理想材料 (Chardon 等人,2012 年;Vandermoere 等人,2018 年)。
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
本研究考虑了生物精炼的关键阶段,研究了大型藻类(Ulva ohnoi)的潜在循环经济方法。研究和报道了生物质干燥、生物炭生产(热解)和应用生物炭除磷等重要阶段。值得注意的是,将大型藻类生物质从平均湿基含水量约 70-85% 干燥至适合热转化的含水量约 10% 是一项艰巨的任务。对生物质和生物炭的物理化学性质进行了表征,并将其与它们吸附磷 (P) 的能力相关联。大型藻类生物质的初步热分析表明,主要重量损失发生在 150 至 550°C 之间。热解过程动力学表明需要 232 至 836 kJ mol − 1 之间的更高表观活化能。当热解过程的温度升高时,可以发现生物炭的孔径、表面积和孔体积增加。在批量实验中,在 700°C 下获得的生物炭的 P 吸附量最高(78 mg-P/g 生物炭),这可能是由于碱金属和碱土金属的可用性。拟二级模型很好地描述了 P 吸附的动力学研究。由大型藻类生物质生产的生物炭可被视为对环境有益且低成本的磷回收吸附剂。吸附后的生物炭由于含有大量的磷磷石,可在农业中用作缓释肥料。
意大利微电子与微系统研究所 (CNR_IMM),第 VIII 大街,5 号工业区,95121 卡塔尼亚,意大利摘要研究了在重掺杂(ND >10 19 cm -3 )n 型磷注入碳化硅 (4H-SiC) 上形成的 Ni 肖特基势垒的电行为,重点研究了正向和反向偏压下的电流传输机制。肖特基二极管的正向电流-电压特性表明,主要的电流传输是热电子场发射机制。另一方面,反向偏压特性不能用独特的机制来描述。事实上,在中等反向偏压下,注入引起的损伤是导致漏电流温度升高的原因,而随着偏压的增加,纯场发射机制趋近于。讨论了重掺杂层上的金属/4H-SiC 接触在实际器件中的潜在应用。关键词:4H-SiC,电气特性,电流传输,肖特基器件
交联聚合物(例如热固性塑料)是一类重要的高性能材料,用于交通运输或可持续能源生产等应用。在这个博士项目中,您将探索未来开发具有动态交联的更可持续热固性塑料的基本机制。我们是 Empa 的一个化学小组,拥有很高的科学卓越性,最近开发了基于磷化学的新型共价自适应网络 (CAN),从而实现了聚合物在统一解决方案中的防火和可回收性。这个跨学科项目涉及聚合物化学和物理学,由瑞士国家科学基金会 (SNSF) 资助。它也与根特大学合作。本项目中解决的科学问题将有助于理解 CAN 中的局部共价和非共价机制,并将它们与以后与技术应用相关的宏观特性相关联。