在本文中,我们使用密度功能理论研究了P 2 Si纳米骨的物理特性,具有不同的磷 - 磷,磷酸磷和硅硅硅的边缘结构。我们的计算表明,所有三个不同边缘的纳米骨都具有热力学稳定性。具有磷 - 磷边缘结构的纳米替比是半导体,具有不同的能量差异,可向上和向下旋转,并且具有磷 - 硅和硅 - 硅边缘边缘结构的纳米锥具有准代理性能。这些发现在这些纳米容器中表现出磁性的存在。此外,我们已经表明,边缘原子对电子特性的贡献比纳米骨中的中央原子的贡献更为主导。我们的发现表明,具有不同边缘结构的PENTA-P2SI纳米容器可以用作电子和光电应用的有前途的候选者。关键字:五烯 - 格雷烯,状态的部分密度,密度功能理论,带隙。pacs no。73,81
孕妇过度使用蓖麻油会导致过早劳动。蓖麻油是一种甘油三酸酯,化学是一种甘油分子,其三种羟基酯均以长链脂肪酸为生。其主要脂肪酸是不饱和的,羟基化的12-羟基,9-二十二烯酸。蓖麻油是由Ricinus Communis植物种子制成的数千年。加热过程将其有毒酶(Ricin)停用,使其安全使用。这项研究是在1403年冬季进行的,在沙漠semnan大学学院的沙漠研究温室中进行了三次复制。研究设计图中的治疗次数如下。对照(不添加肥料)2-尿素肥料每公顷100 kg,每公顷磷酸铵250 kg 250 kg磷酸铵4-在每次复制中考虑每公顷30吨动物肥料。实验是在冬季开始的,随访,夏季进行了灌溉和维护,并通过喷涂进行灌溉。我们得出的结论是,对N和P和肥料富集的物种特异性反应显着促进了净光合速率和生长因子和茎长,叶片面积,胶囊数量和种子数量,人均种子数量,每植物簇数,每植物的簇数以及产生的油的油量。
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
Laurent Nussaum -CEA,法国Rebecca Haling- CSIRO农业和食品,澳大利亚Guillermo Goyenola -Cure,Udelar,Udelar,Uruguay Sylvia Moraes de Souza -Embrapa Milapa Milapa e sorgo,BrazilagustínGrimoldiof Agran of Agran ofba thro and ubba, ,乌拉卢斯·佩杜尔(Uruguay Carlos Perdomo) - 乌德拉尔(Udelar),乌格(Udelar),乌格(Uguay),密歇根州,乌德拉尔(Udelar),乌德拉尔(Uguay fabiana Pezzani)主席农学,Udelar,Uguay Marcelo Ferrando,农业学院,Udelar,Udelar,Uruguay Patricia Vaz,科学系,Udelar,Udelar,Uguayelesbünemann -König-瑞典-Fibl,瑞士,瑞士NataLia bajsa,iibce,iibce,iibce fien fien fibl Amery - ILVO,比利时 Agustín Núñez - INIA,乌拉圭 Andrés Quincke,INIA,乌拉圭 Eduardo Abreo - INIA,乌拉圭 Elena Beyhaut,INIA,乌拉圭 Fernando Lattanzi,INIA,乌拉圭 Robin Cuadro,INIA,乌拉圭 Silvia Garaycochea,INIA 主席,乌拉圭 Matthias Wissuwa - JIRCAS,日本 Erik Smolders - 鲁汶大学,比利时 Abel Steffen - 莱布尼茨植物生物化学研究所,德国 Andrew Neal - 罗瑟姆斯特德研究中心,英国 Martin Blackwell - 罗瑟姆斯特德研究中心,英国 Luis Herrera Estrella - UGA-LANGEBIO,墨西哥 Yves Poirier - 洛桑大学,瑞士
高剂量(HD)Melphalan(100mg/m2/day)连续两天使用时可能导致严重的粘膜炎和胃肠道损伤,从而导致恶心,呕吐,腹泻,痉挛,痉挛,偶尔以及偶尔急性腹痛。WHO 3或4级胃肠道的患病率可高达20%-60%。近年来,美国FDA已批准重组产品(角质细胞细胞生长因子),用于管理与血液毒性治疗有关血肿干细胞支持的患者的严重口服粘膜炎与血液毒性疗法相关的患者(预计制剂疗法预计会诱导粘液型粘膜炎患者)。在II期试验中,与安慰剂相比,环蛋白被证明会降低3/4级粘膜炎的发生率以及中位持续时间。限制使用环脂蛋白的主要副作用是皮肤毒性,淀粉酶和脂肪酶升高。
半导体技术依赖于通过在半导体基质材料的晶格中控制引入替代杂质(掺杂)来调整基板的电性能的能力,以便调整其电子、光学和/或磁性。1 然而,目前的原位掺杂策略不能轻易扩展到纳米级。随着半导体器件的尺寸缩小到纳米级,半导体内单个原子的标准随机分布变得至关重要,因为均匀掺杂分布的假设不再成立。2,3 目前,科学界正在努力开发一种新技术,以展示纳米级半导体结构的确定性掺杂。传统的掺杂技术主要基于离子注入,即用高能含掺杂剂的离子轰击目标半导体,随后使用高温热处理诱导离子替换晶格中的原子。 1 该技术的主要优势在于可以独立控制半导体主体内的掺杂剂量和杂质原子的深度分布。这种方法已被广泛探索,并已成为微电子领域的主力,因为它可以保证大面积的出色掺杂均匀性。
摘 要 【 目的 】 研究旨在探讨人工湿地中常用的 4 种填料 ( 沸石 、 陶粒 、 石英砂 、 砾石 ) 对水体中有机物 、 氮 、 磷及部分重金
近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。
首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。