磷 (P) 是植物生长必需的营养物质,是不断增长的世界人口增加粮食供应所必需的。然而,农业生产中磷的径流和淋溶会引发藻华、水体富营养化和水质问题 (Bol 等人,2018 年;Withers 和 Haygarth,2007 年)。由于土壤中磷的残留,减少施肥量可能不足以在短期至中期内减少地表水的磷负荷 (Barcala 等人,2020 年;Chardon 和 Schoumans,2007 年;Mellander 等人,2016 年;Sharpley 等人,2013 年)。为了更快地降低地表水中的磷含量,我们需要采取缓解措施,减少耕地磷的扩散输入(Mendes,2020;Penn等,2017;Schoumans等,2014)。这些缓解措施应具有成本效益,并且不占用或很少占用宝贵的耕地,以便农民容易接受。铁包砂 (ICS) 是一种磷酸盐 (PO 4 ) 吸附材料,它是饮用水生产的副产品(Chardon 等人,2012 年;Sharma 等人,2002 年;Van Beek 等人,2020 年)并且可放置在管道排水沟周围或场边缘过滤器中以去除 PO 4 ,不占用额外空间(Chardon 等人,2021 年;Groenenberg 等人,2013 年;Lambert 等人,2020 年;Vandermoere 等人,2018 年)。ICS 涂层中的铁 (Fe) 是在快速砂滤器顶部的砂粒周围形成的,当快速砂滤器去除悬浮的 Fe(氢氧化)氧化物时形成的,这些氧化物是在缺氧含 Fe(II) 地下水曝气后或添加 Fe 盐去除有机物后形成的。 ICS 兼具良好的吸附性能和较高的水力传导率。这些特性加上其低成本、丰富的来源,使其成为大规模 PO 4 去除过滤器的理想材料 (Chardon 等人,2012 年;Vandermoere 等人,2018 年)。
phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。框9004,沙特阿拉伯
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
材料科学领域只见证了极少数具有彻底改变我们世界的潜力的发现和技术进步,而二维 (2D) 材料的出现是其中的佼佼者。2004 年,石墨烯从石墨中分离出来,这种材料的特点是原子级薄度,主要受表面效应的影响,开辟了材料科学的新领域。二维材料的研究,包括石墨烯及其对应物,如硅烯、锗烯、磷烯,以及过渡金属二硫属化物 (TMD)、MXenes 和其他层状半导体,已经发展成为一项全球性的努力,涉及物理、化学、工程和生物等不同领域的数千名研究人员。二维材料的独特之处在于其层状结构,包括强的平面内化学键和层间弱的平面外耦合。这种结构排列允许单个原子层分裂,当材料厚度减小到单层或几层时,电子特性会发生非凡的变化。这种现象被称为量子限制,它赋予二维材料独特且往往出乎意料的特性,推动了对各个领域新应用和创新途径的探索。随着研究人员深入研究这些层状材料的复杂性,越来越明显的是,它们有望开启前所未有的可能性,为科学技术的突破性进步铺平道路。
摘要:石墨烯电子纺织品(电子纹理)最近被认为是功能性纺织品领域的有前途的材料以及柔性/可穿戴电子产品。在本文中,我们报告了一种高度导电,柔性的石墨烯织物,该织物由氧化石墨烯(RGO)(RGO)片和玻璃织物组成,结合了表面化学和简单的浸入方法。我们还研究了它们的电子和机电特性,用于电子纺织品和柔性电子。拟建的RGO玻璃织物(RGOGFS)表现出良好的板电阻为30〜40Ω /□。此外,还研究了灵活性和机械稳定性。我们的RGOGF可以保持大于〜5 mm的曲率半径的稳定电阻。良好的电导率和柔韧性表明,RGOGFS在电子纹理和柔性设备中的应用可能具有巨大的潜力。
石墨烯是一种二维的基于碳的光催化剂,显示出很大的希望。这项研究使用氧化石墨烯(GO)与传统的水处理程序,例如离子交换和吸附进行了比较新有机染料甲基蓝(MB)的光催化降解。在这项研究中,通过在水溶液中的光降解甲基蓝(MB)评估了GO和过氧化氢(H 2 O 2)的光催化活性。使用X射线粉末衍射(XRD),扫描电子显微镜(SEM),能量色散光谱(EDX)和傅立叶变换红外射线光谱(FTIR)检查所得的GO纳米颗粒。XRD数据验证了以2θ≈10.44°为中心的强峰,对应于GO的(002)反射。我们的研究发现,纳米颗粒和H 2 O 2在自然阳光照射下在60分钟内的pH〜7时,H 2 O 2的h 2 O 2达到了〜92%的照片脱色。此外,还研究了溶解氧(DOC)和H 2 O 2对MB降解的影响。实验结果表明,氧是增强光催化降解的决定性因素。直接光催化(MB/GO)和H 2 O 2辅助光催化(MB/H 2 O 2/GO)导致DOC 3.5 mgl -1的降解速率常数(K1)从0.019增加到0.019升至0.019升至0.042 min -1。在这种情况下,H 2 O 2充当电子和羟基自由基(•OH)清除剂;但是,添加H 2 O 2应达到正确的剂量,以增加MB分解。将初始DOC含量从2.8增加到3.9 mgl -1导致降解速率常数(K1)从0.035增加到0.062 min -1。对直接和H 2 O 2辅助光催化的光降解机理和动力学进行了研究。
水泥添加剂或水泥研磨助剂 (CGA) 的范围从纯研磨助剂到功能性添加剂和性能增强剂。后者是目前使用最广泛的产品类型。性能增强剂可以提高研磨过程的效率并改善关键的机械性能,例如抗压强度。使用性能增强剂的主要原因之一,除了降低能耗外,是需要降低任何给定水泥的熟料系数。熟料不仅是水泥中最昂贵的成分,也是造成最高相关二氧化碳排放量的成分。如果可以用较低的熟料系数保持相同的水泥性能,那么这是一个双赢的局面。当前的性能增强剂通常依赖于乙二醇和胺化学的组合。这些可使抗压强度提高约 10-20%,同时将熟料系数降低高达 5%,尽管个别情况可能有很大差异。这不仅仅是添加更多产品来获得更大的强度增加或更大的熟料减少的情况。由于这些化学物质在水泥水化过程中相互作用,添加过量会导致性能下降。为了进一步减少熟料,应该研究替代技术,先进材料公司 First Graphene Ltd 与 Fosroc International(一家全球建筑行业高性能化学品制造商和供应商)之间的合作显示出巨大的前景。该合作正在考虑利用添加量极小的石墨烯来实现更高水平的熟料替代。
一种水热方法用于合成不同的光射道,以在染料敏化的太阳能电池(DSSC)中应用。这些光射手包括WO 3,Tio 2,石墨烯-Tio 2,Wo 3 -tio 2和石墨烯3 -tio 2的纳米结构。使用扫描电子显微镜(SEM),能量分散性X射线光谱(EDS),紫外线可见光谱(UV-VIS)和傅立叶转换红外光谱光谱(FTIR)分析纳米颗粒的形态。结果表明,石墨烯 - -tio 2纳米结构具有较大的表面积,为有效的太阳能转化提供了更多的活性位点。值得注意的是,DSSC合并了石墨烯3 -tio 2纳米颗粒电极的表现仅基于TiO 2和WO 3,其较高的短路电流密度为7.5 mA.cm -2,开放式电路电压为0.68 V,填充因子为0.46,填充因子为0.46,功率为2.4%。相反,纯TiO 2和WO 3细胞仅达到0.88%和0.69%的效率。三元纳米结构的出色电子迁移率促进了电荷捕获并注入导电基板,从而减少了重组。此外,WO 3纳米棒和石墨烯的散射效应增强了光阳极中的光收集,从而导致太阳能电池的总体效率提高。这些发现突出了合成石墨烯的潜力,可以在DSSC中应用于有希望的光阳极材料。
Abstrac T: - 基于异构结构的石墨烯/4H-SIC和基于同型的石墨烯,4H-SIC双滴区(DDR)影响电离雪崩传输时间(IMPATT)DIODES DIODES在140GZ处于140GZ的作用。通过使用漂移扩散模型,作者研究了DC,硫二极管的小信号特性。全面的仿真结果表明,与其他同行相比,石墨烯/4H-SIC DDR IMPATT在效率和输出功率方面的表现更好。石墨烯/4H-SIC DDR支持用理想的偏置电流密度为6.51×10 8 A/m 2,得出的转化效率分别为18.4%,输出功率分别为38.73W,表明其优于其他损耗的优势。这项工作中的设计发现非常有前途,并且在实现这些二极管的用于毫米波通信系统关键字的这些二极管:石墨烯,异质结构,碳化硅(SIC),双滴型区域(DDR),sppt。1。简介
抽象具有低热电阻和高温电导的热管是最有效的传热装置之一。它可以在小的横截面区域上移动大量热量,而两个温度限制之间的温度变化极少。这项研究使用专家软件的设计来评估各种纳米流体的性能作为热管的工作流体,包括氧化铜,氧化石墨烯,氧化铁和氧化钛。该分析中使用的基础流体是N-辛醇的水溶液。此分析中考虑的参数是冷凝器流量,填充比,倾斜角和热输入。为了评估热管工作流体的热效率,使用中央复合设计(CCD)矩阵和响应表面方法在实验设计过程中评估所有操作因素。实验发现表明,建议的模型可以将热管的热效率预测到变化的1%以内。结果,建议的模型可用于预测热管的热效率。