摘要:脂质失调与阿尔茨海默氏病(AD)病理有关。转基因AD小鼠模型中淀粉样β(Aβ)斑块病理学的化学分析表明,在β斑块病理学直接接近的微环境中,微环境发生了变化。在小鼠研究中,还报道了与β病理学之间的结构多态性相关的脂质模式的差异,例如弥漫,未成熟和成熟的纤维骨料。迄今为止,尚未对人AD组织的神经脂质微环境变化进行全面分析。Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high- speed and spatial resolution commercial time-of-light instrument, as well as a high- mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1导致AD家族形式的突变(PSEN1)(FAD)。对单个Aβ斑块的空间解决的MSI数据进行询问,使我们能够从富含和耗尽Aβ沉积物的不同子类中验证近40种鞘脂和磷脂物种。其中包括单胞菌 - 旋转酶(GM),神经酰胺单己糖苷(己糖),神经酰胺1-磷酸盐(CERP),神经酰胺磷酸乙醇胺结合物(PE-CER),硫酸磷脂剂(ST),以及磷脂酰糖苷(pi),磷酸酯酸(磷脂酸)(磷酸酯)(磷酸酯)(磷酸化)(磷酸酯) (包括抒情形式)。的确,许多鞘脂种类与先前在转基因AD小鼠模型中看到的物种重叠。有趣的是,与动物研究相比,我们观察到含有蛛网膜酸(AA)的PE和PI物种的定位水平增加。这些发现高度相关,这是人类脂质微环境中与β斑块病理相关的改变。他们为开发潜在的脂质生物标志物的发展提供了基础,以对人类特异性分子途径改变的洞察力进行洞察力。关键词:阿尔茨海默氏病,β-淀粉样蛋白,牙菌病,神经脂肪组学,质谱成像,老年蛋白1■简介
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。
背景和目标:印度尼西亚南苏拉威西的Jeneponto Regency的沿海地区受到微塑性污染的严重影响,这对海洋生物(如贝类和鱼类)构成了威胁。这项研究的目的是鉴定存在微塑料聚合物的存在,包括乙烯基氯化物,聚乙二醇,聚氯二氯甲基乙二醇,聚丁乙烯二甲酸酯,聚(异生丁基),异生酯基乙酸甲酸酯,乙酸纤维素硫酸酯和聚硫酸酯,以及鱼类属硫乙烯,和柔化壳壳酸酯,粘依乙烯基酸酯,粘硫乙烯基乙烯基乙烯基酸酯,和乙烯基硅酸盐酸胺壳酸酯,乙烯酸酯乙烯基酸酯,乙烯酸乙烯基酸酯,乙烯基酸磷脂酸酯,乙烯酸酯和硫乙烯基。印度尼西亚的詹蓬托区。方法:直接从Jeneponto Regency沿海水域的12个地点收集了60种贝类和鱼类样品。进行样品制备,包括酶消化和机械破坏,以将鱼类和贝类的有机组织分离为小颗粒。光学显微镜(以100倍和400倍的放大倍数为单位)用于观察形态,并使用改良的Neubeuer改进的计数室来观察每个样品体积的颗粒数。傅立叶转换红外光谱法用于确定聚合物的类型。发现:羽毛蛤clum含有最高数量的微塑料,总计58个项目范围从0.027到4.587毫米。羽毛蛤中微塑料的总丰度范围为0.25至2.14克。kurisi鱼包含22个物品,尺寸为0.085至2.127毫米,总丰度在0.01至0.08件范围内。乙烯基氯化物是微塑料聚合物的主要类型,占所有微塑料聚合物的42%。在鱼类和蛤中鉴定的聚合物的类型包括乙烯基氯,聚乙二醇,聚氯二氯乙二醇,聚丁烯二苯二甲酸酯,聚(异丁基甲基丙烯酸酯),乙酸酯纤维素丁酸丁酯,丁酸丁酯,聚丁二烯,聚二烯丙烯和聚乙烯基和聚氯乙烯。结论:这项研究成功地鉴定出了Jeneponto沿海地区的贝类和鱼类中发现的八种类型的微型聚合物。最常见的是氯化乙烯。这些发现表明,海洋生物和人类暴露于微塑料中,这可能是有害的,但是需要进一步的研究以了解相关的环境健康影响和风险的全部程度。
背景第二信使二酰甘油在 T 细胞受体 (TCR) 下游信号传导和 T 细胞活化中起关键作用。二酰甘油激酶 zeta (DGK z ) 是一种脂质激酶,它通过磷酸化二酰甘油产生磷脂酸来调节 T 细胞活化,从而充当配体独立的细胞内免疫检查点。DGK z 的抑制有可能增强 T 细胞对次优肿瘤抗原的启动,并以 TCR 参与依赖的方式克服肿瘤微环境中的多种免疫抑制机制。我们在各种临床前体外和体内研究中评估了 DGK z 抑制剂 BAY 2965501 的特异性、有效性和安全性。方法和结果 BAY 2965501 是一种高选择性、有效的人/鼠交叉反应 DGK z 抑制剂。在体外,BAY 2965501 增强了自然杀伤细胞和 T 细胞介导的肿瘤细胞杀伤力,并增强了白细胞介素 2 诱导的自然杀伤细胞活化。重要的是,BAY 2965501 对 DGK z 的抑制能够克服转化生长因子β、前列腺素 E2 和腺苷信号在 T 细胞中传递的抑制信号。然而,BAY 2965501 在体外对人肿瘤细胞系没有表现出直接的抗增殖作用。从原发性人肿瘤中分离的人肿瘤浸润淋巴细胞的单细胞测序显示,DGK z 在耗竭的 CD8+ TCR 克隆型中特异性高表达,表明该 T 细胞亚群具有潜在的免疫抑制作用。此外,BAY 2965501 有效增强了表达肿瘤反应性 TCR 的人 T 细胞的体外抗肿瘤反应性。体内实验中,BAY 2965501 降低了 T 细胞耗竭标志物,例如程序性细胞死亡受体 1 和 T 细胞免疫球蛋白粘蛋白 3,并增强了长期感染淋巴细胞性脉络丛脑膜炎病毒的小鼠的抗病毒 T 细胞反应。在 MB49、F9 和 Hepa129 同基因小鼠肿瘤模型中,与载体治疗相比,BAY 2965501 单一疗法可减缓肿瘤生长。与抗 PDL-1 单一疗法相比,BAY 2965501 与抗程序性细胞死亡配体-1 (抗 PDL-1) 抗体联合使用可减缓肿瘤生长。临床前毒理学研究仅显示低度胃肠道影响,表明临床特征可耐受。结论总之,BAY 2965501 是一种高效、选择性、口服 DGK z 抑制剂。 BAY 2965501 在实体瘤中的首次人体临床试验目前正在招募患者 (NCT05614102)。这项研究将评估 BAY 2965501 的安全性、耐受性、最大耐受剂量或给药剂量、药代动力学、药效学和肿瘤反应特征。致谢编辑支持由 Rachel Fairbanks、BA (Hons)、Complete HealthVizion、IPG Health Medical Communications 提供,并由拜耳公司资助。伦理批准所有动物实验均按照德国动物福利法进行,并经柏林当局批准(柏林国家职业安全、健康保护和技术安全办公室,LAGetSi;编号 A0378/12)